5 research outputs found

    Integrated reference circuits for low-power capacitive sensor interfaces

    Get PDF
    This thesis consists of nine publications and an overview of the research topic, which also summarizes the work. The research described in this thesis concentrates on the design of low-power sensor interfaces for capacitive 3-axis micro-accelerometers. The primary goal throughout the thesis is to optimize power dissipation. Because the author made the main contribution to the design of the reference and power management circuits required, the overview part is dominated by the following research topics: current, voltage, and temperature references, frequency references, and voltage regulators. After an introduction to capacitive micro-accelerometers, the work describes the typical integrated readout electronics of a capacitive sensor on the functional level. The readout electronics can be divided into four different functional parts, namely the sensor readout itself, signal post-processing, references, and power management. Before the focus is shifted to the references and further to power management, different ways to realize the sensor readout are briefly discussed. Both current and voltage references are required in most analog and mixed-signal systems. A bandgap voltage reference, which inherently uses at least one current reference, is practical for the generation of an accurate reference voltage. Very similar circuit techniques can be exploited when implementing a temperature reference, the need for which in the sensor readout may be justified by the temperature compensation, for example. The work introduces non-linear frequency references, namely ring and relaxation oscillators, which are very suitable for the generation of the relatively low-frequency clock signals typically needed in the sensor interfaces. Such oscillators suffer from poor jitter and phase noise performance, the quantities of which also deserve discussion in this thesis. Finally, the regulation of the supply voltage using linear regulators is considered. In addition to extending the battery life by providing a low quiescent current, the regulator must be able to supply very low load currents and operate without off-chip capacitors

    Low-frequency noise in downscaled silicon transistors: Trends, theory and practice

    Get PDF
    By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the devices, which provided a coherent picture, and more interestingly, showed that the models converge each to other, despite the many issues that one can find for the physical origin of each model. Several derivations are made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling law and limits the production yield, from one side, and from other side, the “frozen noise” contributes generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing to the purely statistical accumulation of variance that follows from cause-consequence principle, and irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-frequency noise characterizations. At present, the many models generally coincide each with other, and what makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics behind the numbers”, because the general physical assumptions in each model always fail at some point by the device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales consistently with the 1/area law

    Collective analog bioelectronic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 677-710).In this thesis, I present two examples of fast-and-highly-parallel analog computation inspired by architectures in biology. The first example, an RF cochlea, maps the partial differential equations that describe fluid-membrane-hair-cell wave propagation in the biological cochlea to an equivalent inductor-capacitor-transistor integrated circuit. It allows ultra-broadband spectrum analysis of RF signals to be performed in a rapid low-power fashion, thus enabling applications for universal or software radio. The second example exploits detailed similarities between the equations that describe chemical-reaction dynamics and the equations that describe subthreshold current flow in transistors to create fast-and-highly-parallel integrated-circuit models of protein-protein and gene-protein networks inside a cell. Due to a natural mapping between the Poisson statistics of molecular flows in a chemical reaction and Poisson statistics of electronic current flow in a transistor, stochastic effects are automatically incorporated into the circuit architecture, allowing highly computationally intensive stochastic simulations of large-scale biochemical reaction networks to be performed rapidly. I show that the exponentially tapered transmission-line architecture of the mammalian cochlea performs constant-fractional-bandwidth spectrum analysis with O(N) expenditure of both analysis time and hardware, where N is the number of analyzed frequency bins. This is the best known performance of any spectrum-analysis architecture, including the constant-resolution Fast Fourier Transform (FFT), which scales as O(N logN), or a constant-fractional-bandwidth filterbank, which scales as O (N2).(cont.) The RF cochlea uses this bio-inspired architecture to perform real-time, on-chip spectrum analysis at radio frequencies. I demonstrate two cochlea chips, implemented in standard 0.13m CMOS technology, that decompose the RF spectrum from 600MHz to 8GHz into 50 log-spaced channels, consume < 300mW of power, and possess 70dB of dynamic range. The real-time spectrum analysis capabilities of my chips make them uniquely suitable for ultra-broadband universal or software radio receivers of the future. I show that the protein-protein and gene-protein chips that I have built are particularly suitable for simulation, parameter discovery and sensitivity analysis of interaction networks in cell biology, such as signaling, metabolic, and gene regulation pathways. Importantly, the chips carry out massively parallel computations, resulting in simulation times that are independent of model complexity, i.e., O(1). They also automatically model stochastic effects, which are of importance in many biological systems, but are numerically stiff and simulate slowly on digital computers. Currently, non-fundamental data-acquisition limitations show that my proof-of-concept chips simulate small-scale biochemical reaction networks at least 100 times faster than modern desktop machines. It should be possible to get 103 to 106 simulation speedups of genome-scale and organ-scale intracellular and extracellular biochemical reaction networks with improved versions of my chips. Such chips could be important both as analysis tools in systems biology and design tools in synthetic biology.by Soumyajit Mandal.Ph.D

    18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems: Proceedings

    Get PDF
    Proceedings of the 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems, which took place in Dresden, Germany, 26 – 28 May 2010.:Welcome Address ........................ Page I Table of Contents ........................ Page III Symposium Committees .............. Page IV Special Thanks ............................. Page V Conference program (incl. page numbers of papers) ................... Page VI Conference papers Invited talks ................................ Page 1 Regular Papers ........................... Page 14 Wednesday, May 26th, 2010 ......... Page 15 Thursday, May 27th, 2010 .......... Page 110 Friday, May 28th, 2010 ............... Page 210 Author index ............................... Page XII

    Systematic Analysis of Quadrature VCO With Capacitive Source Degeneration Coupling and Spontaneous Transconductance Matching Techniques

    No full text
    corecore