2 research outputs found

    Prosessori- ja system-on-chip-työkalujen yhteiskäyttö

    Get PDF
    Transport-triggered architecture (TTA) processors provide an efficient middle-ground in creating intellectual property (IP) components for system-on-chip (SoC) designs. Using TTAs, the design effort is greatly reduced compared to ASIC approach, and a more economic and efficient implementation is possible than when using a general purpose processor. This Thesis examines ways to accelerate the design flow when using TTA processors in SoC designs. The proposed flows combine the use of the TTA-based Co-design Environment (TCE) tool set and Kactus2 IP-XACT design environment. The IP-XACT standard and the Kactus2 tool make it easy to integrate and configure IP components from multiple vendors, whereas the TCE tools provide a fast and efficient path from C to VHDL. The Thesis presents three use cases for TTA: as a ready-made fixed accelerator, a general purpose processor, and a tailored application-specific processor. Moreover, management of instance-specific data in IP-XACT is discussed. For each use case, the design flows are presented in detail step-by-step, a case example is presented, and the design time spent on each step is evaluated. The flows contain between 15 and 18 steps and use between 8 and 12 different program tools from the studied tool sets. Provided that C source codes and IP-XACT library are available, a non-HW oriented engineer can implement an FPGA based multiprocessor product in less than 4 hours. Based on the results, further development suggestions for the TCE tools and Kactus2 are made

    System-on-Chip deployment with MCAPI abstraction and IP-XACT metadata

    No full text
    corecore