39,222 research outputs found

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Fault Injection for Embedded Microprocessor-based Systems

    Get PDF
    Microprocessor-based embedded systems are increasingly used to control safety-critical systems (e.g., air and railway traffic control, nuclear plant control, aircraft and car control). In this case, fault tolerance mechanisms are introduced at the hardware and software level. Debugging and verifying the correct design and implementation of these mechanisms ask for effective environments, and Fault Injection represents a viable solution for their implementation. In this paper we present a Fault Injection environment, named FlexFI, suitable to assess the correctness of the design and implementation of the hardware and software mechanisms existing in embedded microprocessor-based systems, and to compute the fault coverage they provide. The paper describes and analyzes different solutions for implementing the most critical modules, which differ in terms of cost, speed, and intrusiveness in the original system behavio

    Cache-Aware Memory Manager for Optimistic Simulations

    Get PDF
    Parallel Discrete Event Simulation is a well known technique for executing complex general-purpose simulations where models are described as objects the interaction of which is expressed through the generation of impulsive events. In particular, Optimistic Simulation allows full exploitation of the available computational power, avoiding the need to compute safety properties for the events to be executed. Optimistic Simulation platforms internally rely on several data structures, which are meant to support operations aimed at ensuring correctness, inter-kernel communication and/or event scheduling. These housekeeping and management operations access them according to complex patterns, commonly suffering from misuse of memory caching architectures. In particular, operations like log/restore access data structures on a periodic basis, producing the replacement of in-cache buffers related to the actual working set of the application logic, producing a non-negligible performance drop. In this work we propose generally-applicable design principles for a new memory management subsystem targeted at Optimistic Simulation platforms which can face this issue by wisely allocating memory buffers depending on their actual future access patterns, in order to enhance event-execution memory locality. Additionally, an application-transparent implementation within ROOT-Sim, an open-source generalpurpose optimistic simulation platform, is presented along with experimental results testing our proposal

    Dynamic Energy Management for Chip Multi-processors under Performance Constraints

    Get PDF
    We introduce a novel algorithm for dynamic energy management (DEM) under performance constraints in chip multi-processors (CMPs). Using the novel concept of delayed instructions count, performance loss estimations are calculated at the end of each control period for each core. In addition, a Kalman filtering based approach is employed to predict workload in the next control period for which voltage-frequency pairs must be selected. This selection is done with a novel dynamic voltage and frequency scaling (DVFS) algorithm whose objective is to reduce energy consumption but without degrading performance beyond the user set threshold. Using our customized Sniper based CMP system simulation framework, we demonstrate the effectiveness of the proposed algorithm for a variety of benchmarks for 16 core and 64 core network-on-chip based CMP architectures. Simulation results show consistent energy savings across the board. We present our work as an investigation of the tradeoff between the achievable energy reduction via DVFS when predictions are done using the effective Kalman filter for different performance penalty thresholds

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo
    • …
    corecore