69 research outputs found

    Wearable electrochemical biosensors in North America

    Get PDF
    Tremendous research and commercialization efforts around the world are focused on developing novel wearable electrochemical biosensors that can noninvasively and continuously screen for biochemical markers in body fluids for the prognosis, diagnosis and management of diseases, as well as the monitoring of fitness. Researchers in North America are leading the development of innovative wearable platforms that can comfortably comply to the human body and efficiently sample fluids such as sweat, interstitial fluids, tear and saliva for the electrochemical detection of biomarkers through various sensing approaches such as potentiometric ion selective electrodes and amperometric enzymatic sensors. We start this review with a historical timeline overviewing the major milestones in the development of wearable electrochemical sensors by North American institutions. We then describe how such research efforts have led to pioneering developments and are driving the advancement and commercialization of wearable electrochemical sensors: from minimally invasive continuous glucose monitors for chronic disease management to non-invasive sweat electrolyte sensors for dehydration monitoring in fitness applications. While many countries across the globe have contributed significantly to this rapidly emerging field, their contributions are beyond the scope of this review. Furthermore, we share our perspective on the promising future of wearable electrochemical sensors in applications spanning from remote and personalized healthcare to wellness

    A Passive UHF RFID Dielectric Sensor for Aqueous Electrolytes

    Get PDF
    The one step modification of a commercial RFID sensing tag is demonstrated using polydimethylsiloxane based thin film chemistry to construct reusable passive RFID sensors for changes in the dielectric properties of electrolyte solutions as a function of concentration. The effects of PDMS film thickness were characterized as a function of RFID sensor code value. The output sensor code of the RFMicron RFM2100-AER wireless flexible moisture sensor (taken between 800-860 MHz) was compared to readings taken when the tag was dry and when the tag had a water deposition on the sensor area. The effect of the direct application of liquid water to the tag was to alter the capacitance presented to the integrated chip which auto-tunes to correct for the reactance. By varying the thickness of the PDMS film between the interdigitated sensor and deposited liquid, the sensitivity of the tag to a high dielectric medium could be controlled. Aqueous salt solutions were tested on a 500 m thickness film. It was found that the sensing platform could be used as a means of measuring the concentration of various salt solutions within the range 0-2M, and in turn could be used as a passive UHF RFID dielectric measuring tool. The measurement capability of the platform was subsequently demonstrated using a reduced frequency range (845-865 MHz)

    Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat

    Get PDF
    Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of cold plasma treatment on the transparency and bonding strength of PLA sheets was investigated. The PLA membrane, to act as a sweat absorption pad, was directly deposited onto the membrane holder layer by means of an electrolyte-assisted electrospinning technique. The membrane adhesion capacity was investigated by indentation tests in both dry and wet modes. The integrated device made of PLA and silver-based electrodes was used to quantify chloride ions. The calibration tests revealed that the proposed sensor platform could quantify chloride ions in a sensitive and reproducible way. The chloride ions were also quantified in a real sweat sample collected from a healthy volunteer. Therefore, we demonstrated the feasibility of a green and integrated sweat sensor that can be applied directly on human skin to quantify chloride ions

    Effect of skin dielectric properties on the read range of epidermal ultra-high frequency radio-frequency identification tags

    Get PDF
    This Letter presents an investigation of the effect of human tissue conductivity and permittivity on the performance of epidermal transfer tattoo ultra-high frequency radio-frequency identification (RFID) tags. The measurements were carried out on 20 individuals and the variations in the measured dielectric properties correlate well with variations in the measured tag read range on the individuals and to a lesser extent with their body mass index values. Simulation results also showed the effects of permittivity and conductivity on the designed resonance frequency of the RFID tag
    corecore