20,484 research outputs found

    Wave techniques for noise modeling and measurement

    Get PDF
    The noise wave approach is applied to analysis, modeling, and measurement applications. Methods are presented for the calculation of component and network noise wave correlation matrices. Embedding calculations, relations to two-port figures-of-merit, and transformations to traditional representations are discussed. Simple expressions are derived for MESFET and HEMT noise wave parameters based on a linear equivalent circuit. A noise wave measurement technique is presented and experimentally compared with the conventional method

    An effective AMS Top-Down Methodology Applied to the Design of a Mixed-SignalUWB System-on-Chip

    Get PDF
    The design of Ultra Wideband (UWB) mixed-signal SoC for localization applications in wireless personal area networks is currently investigated by several researchers. The complexity of the design claims for effective top-down methodologies. We propose a layered approach based on VHDL-AMS for the first design stages and on an intelligent use of a circuit-level simulator for the transistor-level phase. We apply the latter just to one block at a time and wrap it within the system-level VHDL-AMS description. This method allows to capture the impact of circuit-level design choices and non-idealities on system performance. To demonstrate the effectiveness of the methodology we show how the refinement of the design affects specific UWB system parameters such as bit-error rate and localization estimations

    Rotors on Active Magnetic Bearings: Modeling and Control Techniques

    Get PDF
    In the last decades the deeper and more detailed understanding of rotating machinery dynamic behavior facilitated the study and the design of several devices aiming at friction reduction, vibration damping and control, rotational speed increase and mechanical design optimization. Among these devices a promising technology is represented by active magnetic actuators which found a great spread in rotordynamics and in high precision applications due to (a) the absence of all fatigue and tribology issues motivated by the absence of contact, (b) the small sensitivity to the operating conditions, (c) the wide possibility of tuning even during operation, (d) the predictability of the behavior. This technology can be classified as a typical mechatronic product due to its nature which involves mechanical, electrical and control aspects, merging them in a single system. The attractive potential of active magnetic suspensions motivated a considerable research effort for the past decade focused mostly on electrical actuation subsystem and control strategies. Examples of application areas are: (a) Turbomachinery, (b) Vibration isolation, (c) Machine tools and electric drives, (d) Energy storing flywheels, (e) Instruments in space and physics, (f) Non-contacting suspensions for micro-techniques, (g) Identification and test equipment in rotordynamics. This chapter illustrates the design, the modeling, the experimental tests and validation of all the subsystems of a rotors on a five-axes active magnetic suspension. The mechanical, electrical, electronic and control strategies aspects are explained with a mechatronic approach evaluating all the interactions between them. The main goals of the manuscript are: ‱ Illustrate the design and the modeling phases of a five-axes active magnetic suspension; ‱ Discuss the design steps and the practical implementation of a standard suspension control strategy; ‱ Introduce an off-line technique of electrical centering of the actuators; ‱ Illustrate the design steps and the practical implementation of an online rotor selfcentering control technique. The experimental test rig is a shaft (Weight: 5.3 kg. Length: 0.5 m) supported by two radial and one axial cylindrical active magnetic bearings and powered by an asynchronous high frequency electric motor. The chapter starts on an overview of the most common technologies used to support rotors with a deep analysis of their advantages and drawbacks with respect to active magnetic bearings. Furthermore a discussion on magnetic suspensions state of the art is carried out highlighting the research efforts directions and the goals reached in the last years. In the central sections, a detailed description of each subsystem is performed along with the modeling steps. In particular the rotor is modeled with a FE code while the actuators are considered in a linearized model. The last sections of the chapter are focused on the control strategies design and the experimental tests. An off-line technique of actuators electrical centering is explained and its advantages are described in the control design context. This strategy can be summarized as follows. Knowing that: a) each actuation axis is composed by two electromagnets; b) each electromagnet needs a current closed-loop control; c) the bandwidth of this control is depending on the mechanical airgap, then the technique allows to obtain the same value of the closed-loop bandwidth of the current control of both the electromagnets of the same actuation axis. This approach improves performance and gives more steadiness to the control behavior. The decentralized approach of the control strategy allowing the full suspensions on five axes is illustrated from the design steps to the practical implementation on the control unit. Furthermore a selfcentering technique is described and implemented on the experimental test rig: this technique uses a mobile notch filter synchronous with the rotational speed and allows the rotor to spin around its mass center. The actuators are not forced to counteract the unbalance excitation avoiding saturations. Finally, the experimental tests are carried out on the rotor to validate the suspension control, the off-line electrical centering and the selfcentering technique. The numerical and experimental results are superimposed and compared to prove the effectiveness of the modeling approach

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Microwave apparatus for gravitational waves observation

    Full text link
    In this report the theoretical and experimental activities for the development of superconducting microwave cavities for the detection of gravitational waves are presented.Comment: 42 pages, 28 figure

    Investigating the role of model-based reasoning while troubleshooting an electric circuit

    Full text link
    We explore the overlap of two nationally-recognized learning outcomes for physics lab courses, namely, the ability to model experimental systems and the ability to troubleshoot a malfunctioning apparatus. Modeling and troubleshooting are both nonlinear, recursive processes that involve using models to inform revisions to an apparatus. To probe the overlap of modeling and troubleshooting, we collected audiovisual data from think-aloud activities in which eight pairs of students from two institutions attempted to diagnose and repair a malfunctioning electrical circuit. We characterize the cognitive tasks and model-based reasoning that students employed during this activity. In doing so, we demonstrate that troubleshooting engages students in the core scientific practice of modeling.Comment: 20 pages, 6 figures, 4 tables; Submitted to Physical Review PE

    Power waves formulation of oscillation conditions: avoidance of bifurcation modes in cross-coupled VCO architectures

    Get PDF
    This paper discusses necessity of power-waves formulation to extend voltage-current oriented approaches based on linear concepts such as admittance/impedance operators and transfer-function representations. Importance of multi-physics methodologies, throughout power-waves formulation, for the analysis and design of crystal oscillators is discussed. Interpretation of bifurcation modes in differential cross-coupled VCO architectures in terms of gyrator-like behavior, is proposed. Impact of amplitude level control (ALC) on large-signal phase noise performances is underlined showing necessity of robust control analysis approach relative to power-energy considerations
    • 

    corecore