3 research outputs found

    Variantenentwicklung im ZHO-Modell im Kontext der PGE - Produktgenerationsentwicklung – Methode zur Entscheidungsunterstützung bei der Konzeptentwicklung in der Angebotsphase auf Basis abgeleiteter Varianten = Variant Development using the System Triple Approach in the Context of PGE - Product Generation Engineering – Method for Decision Support during Concept Development in the Offering Phase based on Derived Variants

    Get PDF
    In dieser Arbeit wird eine Methode vorgestellt, die Konstrukteure in der Angebotsphase beim Ableiten, Bewerten und Auswählen kunden- und anbietergerechten Varianten auf Basis von Referenzprodukten eines bestehenden Baukastens unterstützt. Die Verwendung von Referenzprodukten für neue Kundenanfragen gewinnt für automobile Zulieferunternehmen zunehmend an Bedeutung, um innerhalb der geforderten Fristen Angebote erstellen zu können. Die Angebotserstellung wird ferner erschwert durch steigende Variantenvielfalt und zunehmend komplexere Produkte zur Abdeckung immer vielfältigerer Kundenanforderungen. Hinzu kommt, dass vielfach in der Angebotsphase Zielvorgaben variiert werden. Die Variantenentwicklung in der Angebotsphase ist damit ein stark unsicherheitsbehafteter Prozess der häufig hohe Konstruktionsaufwände bedingt, um fallspezifisch zielführende Varianten ableiten, bewerten und auswählen zu können. Die Problem- und Bedarfssituation resultiert aus den Erfahrungen des Autors, der seit mehr als zehn Jahren als Konstrukteur für Ventiltriebkomponenten im Entwick-lungsbereich eines Tier-1-Automobilzulieferers tätig ist. Durch eine Fragebogen-Studie in drei Konstruktionsabteilungen des fallgebenden Zulieferunternehmens sowie durch eine begleitende Konstruktionsdatenanalyse von abgeschlossenen Anfrage- und Serienprojekten wird die Problem- und Bedarfssituation bestätigt. Hieraus ergibt sich der primäre Bedarf, zu einem frühen Zeitpunkt in der Angebotsphase die Konstruktionsaktivitäten auf die zielführenden Varianten fokussieren zu können. Hiermit sollen die nicht zielführenden Aktivitäten minimiert werden, um die Zeitvorgaben des Kunden einhalten und Entwicklungskosten reduzieren zu können. Die Methode wird praxisnah anhand einer detaillierten Produktanalyse zu gebauten Nockenwellensystemen entwickelt und wissenschaftlich auf Grundlage des erweiterten ZHO-Modells beschrieben. Mit den Analyseergebnissen wird die wissenschaftliche Methode verifiziert und im Rahmen eines Softwareprototyps operationalisiert. Mit Hilfe dieses Prototyps wird das Methodenpotential in einer Interview-Studie mit Konstrukteuren evaluiert. Der hieraus resultierende, zentrale Bedarf, die Firmenexpertise bei der Variantenbewertung zu berücksichtigen, wird durch die Einbeziehung der Variationsanteile der PGE - Produktgenerationsentwicklung für die Entscheidungsunterstützung abgedeckt und durch retrospektive Methodenanwendung auf historische Projektdaten zweier angeschlossener Industrieprojekte evaluiert. Die Methode leistet durch die Berücksichtigung der Firmenexpertise einen zentralen Beitrag zur systematischen Variantenbeurteilung. Mit der Methode kann variantenspezifisch Risiko, Aufwand und Potential ermittelt werden. Darüber hinaus lässt sich mit der Entscheidungsunterstützung erkennen, ob die Firmenexpertise für konkret angefragte Produkte ausreicht oder der aktuelle Baukasten erweitert werden muss

    Robustheitssteigerung in Produktionsnetzwerken mithilfe eines integrierten Störungsmanagements

    Get PDF
    Manufacturing companies operating in global production networks face increasing susceptibilities to disruptions that may have far-reaching consequences for the entire network. To cope with disruptions and to maintain the network\u27s performance even if disruptions occur, companies are in need of a holistic, systematic disruption management, which includes all network actors in the identification of advantageous reaction measures and thus ensures the network\u27s robustness against disruptions. However, current implementations of operational disruption management are mostly exclusively based on experience or intuition and are limited to individual, production or logistics-related partners or areas, hence not forcing a holistically advantageous reaction. Therefore, the objective of the present thesis lies in the development of a methodology for increasing robustness in production networks by means of an integrated disruption management, taking both production and logistics perspectives into account. Based on the analysis and modelling of significant, production- and logistics-related disruptions, a simulation-based approach is used to identify (combinations of) countermeasures that are suitable both for the elimination of disruptions as well as the minimization of their consequences. The simulation thereby combines design of experiments with methods of metamodeling in order to obtain comprehensive statements about the interactions between disruptions, countermeasures and system performance and thus about the suitability of certain measures. Based on the knowledge about the suitability of certain measures, proactive strategies are derived, which promote the implementation of advantageous measures from a planning point of view by appropriately adjusting the respective capacities in the production network. This combined approach, which optimally coordinates the planning and control components of disruption management, allows to increase robustness in production networks. Within the scope of the research project FlexPLN, the developed methodology has been discussed and applied to a use case from the aviation industry. The results thereby do not only unveil that a joint consideration of production and logistics measures provides a promising means for a comprehensive understanding of disruptions and their consequences for production networks, but also indicate that a metamodeling-based approach might be meaningful to predict suitable countermeasures for the reaction to disruptions
    corecore