3,818 research outputs found

    A framework for utility data integration in the UK

    Get PDF
    In this paper we investigate various factors which prevent utility knowledge from being fully exploited and suggest that integration techniques can be applied to improve the quality of utility records. The paper suggests a framework which supports knowledge and data integration. The framework supports utility integration at two levels: the schema and data level. Schema level integration ensures that a single, integrated geospatial data set is available for utility enquiries. Data level integration improves utility data quality by reducing inconsistency, duplication and conflicts. Moreover, the framework is designed to preserve autonomy and distribution of utility data. The ultimate aim of the research is to produce an integrated representation of underground utility infrastructure in order to gain more accurate knowledge of the buried services. It is hoped that this approach will enable us to understand various problems associated with utility data, and to suggest some potential techniques for resolving them

    SIFT: Building an Internet of safe Things

    Get PDF
    As the number of connected devices explodes, the use scenarios of these devices and data have multiplied. Many of these scenarios, e.g., home automation, require tools beyond data visualizations, to express user intents and to ensure interactions do not cause undesired effects in the physical world. We present SIFT, a safety-centric programming platform for connected devices in IoT environments. First, to simplify programming, users express high-level intents in declarative IoT apps. The system then decides which sensor data and operations should be combined to satisfy the user requirements. Second, to ensure safety and compliance, the system verifies whether conflicts or policy violations can occur within or between apps. Through an office deployment, user studies, and trace analysis using a large-scale dataset from a commercial IoT app authoring platform, we demonstrate the power of SIFT and highlight how it leads to more robust and reliable IoT apps

    A conceptual framework and a risk management approach for interoperability between geospatial datacubes

    Get PDF
    De nos jours, nous observons un intérêt grandissant pour les bases de données géospatiales multidimensionnelles. Ces bases de données sont développées pour faciliter la prise de décisions stratégiques des organisations, et plus spécifiquement lorsqu’il s’agit de données de différentes époques et de différents niveaux de granularité. Cependant, les utilisateurs peuvent avoir besoin d’utiliser plusieurs bases de données géospatiales multidimensionnelles. Ces bases de données peuvent être sémantiquement hétérogènes et caractérisées par différent degrés de pertinence par rapport au contexte d’utilisation. Résoudre les problèmes sémantiques liés à l’hétérogénéité et à la différence de pertinence d’une manière transparente aux utilisateurs a été l’objectif principal de l’interopérabilité au cours des quinze dernières années. Dans ce contexte, différentes solutions ont été proposées pour traiter l’interopérabilité. Cependant, ces solutions ont adopté une approche non systématique. De plus, aucune solution pour résoudre des problèmes sémantiques spécifiques liés à l’interopérabilité entre les bases de données géospatiales multidimensionnelles n’a été trouvée. Dans cette thèse, nous supposons qu’il est possible de définir une approche qui traite ces problèmes sémantiques pour assurer l’interopérabilité entre les bases de données géospatiales multidimensionnelles. Ainsi, nous définissons tout d’abord l’interopérabilité entre ces bases de données. Ensuite, nous définissons et classifions les problèmes d’hétérogénéité sémantique qui peuvent se produire au cours d’une telle interopérabilité de différentes bases de données géospatiales multidimensionnelles. Afin de résoudre ces problèmes d’hétérogénéité sémantique, nous proposons un cadre conceptuel qui se base sur la communication humaine. Dans ce cadre, une communication s’établit entre deux agents système représentant les bases de données géospatiales multidimensionnelles impliquées dans un processus d’interopérabilité. Cette communication vise à échanger de l’information sur le contenu de ces bases. Ensuite, dans l’intention d’aider les agents à prendre des décisions appropriées au cours du processus d’interopérabilité, nous évaluons un ensemble d’indicateurs de la qualité externe (fitness-for-use) des schémas et du contexte de production (ex., les métadonnées). Finalement, nous mettons en œuvre l’approche afin de montrer sa faisabilité.Today, we observe wide use of geospatial databases that are implemented in many forms (e.g., transactional centralized systems, distributed databases, multidimensional datacubes). Among those possibilities, the multidimensional datacube is more appropriate to support interactive analysis and to guide the organization’s strategic decisions, especially when different epochs and levels of information granularity are involved. However, one may need to use several geospatial multidimensional datacubes which may be semantically heterogeneous and having different degrees of appropriateness to the context of use. Overcoming the semantic problems related to the semantic heterogeneity and to the difference in the appropriateness to the context of use in a manner that is transparent to users has been the principal aim of interoperability for the last fifteen years. However, in spite of successful initiatives, today's solutions have evolved in a non systematic way. Moreover, no solution has been found to address specific semantic problems related to interoperability between geospatial datacubes. In this thesis, we suppose that it is possible to define an approach that addresses these semantic problems to support interoperability between geospatial datacubes. For that, we first describe interoperability between geospatial datacubes. Then, we define and categorize the semantic heterogeneity problems that may occur during the interoperability process of different geospatial datacubes. In order to resolve semantic heterogeneity between geospatial datacubes, we propose a conceptual framework that is essentially based on human communication. In this framework, software agents representing geospatial datacubes involved in the interoperability process communicate together. Such communication aims at exchanging information about the content of geospatial datacubes. Then, in order to help agents to make appropriate decisions during the interoperability process, we evaluate a set of indicators of the external quality (fitness-for-use) of geospatial datacube schemas and of production context (e.g., metadata). Finally, we implement the proposed approach to show its feasibility

    State-of-the-Art Report on Systems Analysis Methods for Resolution of Conflicts in Water Resources Management

    Get PDF
    Water is an important factor in conflicts among stakeholders at the local, regional, and even international level. Water conflicts have taken many forms, but they almost always arise from the fact that the freshwater resources of the world are not partitioned to match the political borders, nor are they evenly distributed in space and time. Two or more countries share the watersheds of 261 major rivers and nearly half of the land area of the wo rld is in international river basins. Water has been used as a military and political goal. Water has been a weapon of war. Water systems have been targets during the war. A role of systems approach has been investigated in this report as an approach for resolution of conflicts over water. A review of systems approach provides some basic knowledge of tools and techniques as they apply to water management and conflict resolution. Report provides a classification and description of water conflicts by addressing issues of scale, integrated water management and the role of stakeholders. Four large-scale examples are selected to illustrate the application of systems approach to water conflicts: (a) hydropower development in Canada; (b) multipurpose use of Danube river in Europe; (c) international water conflict between USA and Canada; and (d) Aral See in Asia. Water conflict resolution process involves various sources of uncertainty. One section of the report provides some examples of systems tools that can be used to address objective and subjective uncertainties with special emphasis on the utility of the fuzzy set theory. Systems analysis is known to be driven by the development of computer technology. Last section of the report provides one view of the future and systems tools that will be used for water resources management. Role of the virtual databases, computer and communication networks is investigated in the context of water conflicts and their resolution.https://ir.lib.uwo.ca/wrrr/1005/thumbnail.jp

    Is the Delphi method valid for business ethics? A survey analysis

    Get PDF
    Although Delphi has come a long way in the development of the method itself, or even in business organisation, it has not been used at all in business ethics. To fill this gap, we have reviewed the literature on the use of Delphi in business, and particularly in the field of business ethics; we have also evidenced the method’s lack of use in this field, but noted its potential contribution to this research stream. An online survey has been administered to scholars in business ethics that have previously participated in a Delphi survey. The scholars come from nine different countries, and the survey has been held between January 2015 and March-June 2016. The findings show that in the experts’ opinion Delphi is as rigorous, appropriate and useful as any other research method in the field of business ethics, such as focus group, interviews, surveys (online) and case analysis. The Delphi method is assessed anonymously and economically by a group of experts dispersed around the world. Moreover, applying the Delphi method in business ethics could enrich the consensus on limiting the fuzzy area in which ethical business decisions (ethical decision-making) are argued and determined. It is a way of facilitating the search for a solution to the ethical dilemmas delimiting a problem, which is a further advantage of the Delphi technique

    SEEING THE UNSEEN: DELIVERING INTEGRATED UNDERGROUND UTILITY DATA IN THE UK

    Get PDF
    In earlier work we proposed a framework to integrate heterogeneous geospatial utility data in the UK. This paper provides an update on the techniques used to resolve semantic and schematic heterogeneities in the UK utility domain. Approaches for data delivery are discussed, including descriptions of three pilot projects and domain specific visualization issues are considered. A number of practical considerations are discussed that will impact on how any implementation architecture is derived from the integration framework. Considerations of stability, security, currency, operational impact and response time can reveal a number of conflicting constraints. The impacts of these constraints are discussed in respect of either a virtual or materialised delivery system. 1

    A cooperative framework for molecular biology database integration using image object selection

    Get PDF
    The theme and the concept of 'Molecular Biology Database Integration' and the problems associated with this concept initiated the idea for this Ph.D research. The available technologies facilitate to analyse the data independently and discretely but it fails to integrate the data resources for more meaningful information. This along with the integration issues created the scope for this Ph.D research. The research has reviewed the 'database interoperability' problems and it has suggested a framework for integrating the molecular biology databases. The framework has proposed to develop a cooperative environment to share information on the basis of common purpose for the molecular biology databases. The research has also reviewed other implementation and interoperability issues for laboratory based, dedicated and target specific database. The research has addressed the following issues: diversity of molecular biology databases schemas, schema constructs and schema implementation multi-database query using image object keying, database integration technologies using context graph, automated navigation among these databases. This thesis has introduced a new approach for database implementation. It has introduced an interoperable component database concept to initiate multidatabase query on gene mutation data. A number of data models have been proposed for gene mutation data which is the basis for integrating the target specific component database to be integrated with the federated information system. The proposed data models are: data models for genetic trait analysis, classification of gene mutation data, pathological lesion data and laboratory data. The main feature of this component database is non-overlapping attributes and it will follow non-redundant integration approach as explained in the thesis. This will be achieved by storing attributes which will not have the union or intersection of any attributes that exist in public domain molecular biology databases. Unlike data warehousing technique, this feature is quite unique and novel. The component database will be integrated with other biological data sources for sharing information in a cooperative environment. This involves developing new tools. The thesis explains the role of these new tools which are: meta data extractor, mapping linker, query generator and result interpreter. These tools are used for a transparent integration without creating any global schema of the participating databases. The thesis has also established the concept of image object keying for multidatabase query and it has proposed a relevant algorithm for matching protein spot in gel electrophoresis image. An object spot in gel electrophoresis image will initiate the query when it is selected by the user. It matches the selected spot with other similar spots in other resource databases. This image object keying method is an alternative to conventional multidatabase query which requires writing complex SQL scripts. This method also resolve the semantic conflicts that exist among molecular biology databases. The research has proposed a new framework based on the context of the web data for interactions with different biological data resources. A formal description of the resource context is described in the thesis. The implementation of the context into Resource Document Framework (RDF) will be able to increase the interoperability by providing the description of the resources and the navigation plan for accessing the web based databases. A higher level construct is developed (has, provide and access) to implement the context into RDF for web interactions. The interactions within the resources are achieved by utilising an integration domain to extract the required information with a single instance and without writing any query scripts. The integration domain allows to navigate and to execute the query plan within the resource databases. An extractor module collects elements from different target webs and unify them as a whole object in a single page. The proposed framework is tested to find specific information e.g., information on Alzheimer's disease, from public domain biology resources, such as, Protein Data Bank, Genome Data Bank, Online Mendalian Inheritance in Man and local database. Finally, the thesis proposes further propositions and plans for future work

    The OCareCloudS project: toward organizing care through trusted cloud services

    Get PDF
    The increasing elderly population and the shift from acute to chronic illness makes it difficult to care for people in hospitals and rest homes. Moreover, elderly people, if given a choice, want to stay at home as long as possible. In this article, the methodologies to develop a cloud-based semantic system, offering valuable information and knowledge-based services, are presented. The information and services are related to the different personal living hemispheres of the patient, namely the daily care-related needs, the social needs and the daily life assistance. Ontologies are used to facilitate the integration, analysis, aggregation and efficient use of all the available data in the cloud. By using an interdisciplinary research approach, where user researchers, (ontology) engineers, researchers and domain stakeholders are at the forefront, a platform can be developed of great added value for the patients that want to grow old in their own home and for their caregivers
    • …
    corecore