5,846 research outputs found

    A Functional Architecture Approach to Neural Systems

    Get PDF
    The technology for the design of systems to perform extremely complex combinations of real-time functionality has developed over a long period. This technology is based on the use of a hardware architecture with a physical separation into memory and processing, and a software architecture which divides functionality into a disciplined hierarchy of software components which exchange unambiguous information. This technology experiences difficulty in design of systems to perform parallel processing, and extreme difficulty in design of systems which can heuristically change their own functionality. These limitations derive from the approach to information exchange between functional components. A design approach in which functional components can exchange ambiguous information leads to systems with the recommendation architecture which are less subject to these limitations. Biological brains have been constrained by natural pressures to adopt functional architectures with this different information exchange approach. Neural networks have not made a complete shift to use of ambiguous information, and do not address adequate management of context for ambiguous information exchange between modules. As a result such networks cannot be scaled to complex functionality. Simulations of systems with the recommendation architecture demonstrate the capability to heuristically organize to perform complex functionality

    Parallelized Rigid Body Dynamics

    Get PDF
    Physics engines are collections of API-like software designed for video games, movies and scientific simulations. While physics engines often come in many shapes and designs, all engines can benefit from an increase in speed via parallelization. However, despite this need for increased speed, it is uncommon to encounter a parallelized physics engine today. Many engines are long-standing projects and changing them to support parallelization is too costly to consider as a practical matter. Parallelization needs to be considered from the design stages through completion to ensure adequate implementation. In this project we develop a realistic approach to simulate physics in a parallel environment. Utilizing many techniques we establish a practical approach to significantly reduce the run-time on a standard physics engine
    corecore