1,724 research outputs found

    Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (VANETs)

    Get PDF
    This paper presents a novel dissimilarity metric based on local neighboring information and a genetic programming approach for efficient data dissemination in Vehicular Ad Hoc Networks (VANETs). The primary aim of the dissimilarity metric is to replace the Euclidean distance in probabilistic data dissemination schemes, which use the relative Euclidean distance among vehicles to determine the retransmission probability. The novel dissimilarity metric is obtained by applying a metaheuristic genetic programming approach, which provides a formula that maximizes the Pearson Correlation Coefficient between the novel dissimilarity metric and the Euclidean metric in several representative VANET scenarios. Findings show that the obtained dissimilarity metric correlates with the Euclidean distance up to 8.9% better than classical dissimilarity metrics. Moreover, the obtained dissimilarity metric is evaluated when used in well-known data dissemination schemes, such as p-persistence, polynomial and irresponsible algorithm. The obtained dissimilarity metric achieves significant improvements in terms of reachability in comparison with the classical dissimilarity metrics and the Euclidean metric-based schemes in the studied VANET urban scenarios

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Network coding for wireless communication networks

    Get PDF
    This special issue includes a collection of 19 outstanding research papers which cover a diversity of topics on the application of network coding in wireless communication networks.published_or_final_versio

    Wireless Video Transmission with Over-the-Air Packet Mixing

    Full text link
    In this paper, we propose a system for wireless video transmission with a wireless physical layer (PHY) that supports cooperative forwarding of interfered/superimposed packets. Our system model considers multiple and independent unicast transmissions between network nodes while a number of them serve as relays of the interfered/superimposed signals. For this new PHY the average transmission rate that each node can achieve is estimated first. Next, we formulate a utility optimization framework for the video transmission problem and we show that it can be simplified due to the features of the new PHY. Simulation results reveal the system operating regions for which superimposing wireless packets is a better choice than a typical cooperative PHY.Comment: 2012 Packet Video Worksho

    Wireless measurement Scheme for bandwidth Estimation in Multihop Wireless Adhoc network

    Get PDF
    The necessity to bear real time and multimedia application for users of Mobile 1D468;1D485;1D489;1D490;1D484; Network (1D474;1D468;1D475;1D46C;1D47B;) is becoming vital. Mobile 1D468;1D485;1D489;1D490;1D484; network facilitates decentralized network that can present multimedia users with mobility that they have demanded, if proficient 1D478;1D490;1D47A; multicast strategies were developed. By giving the guarantee of 1D478;1D490;1D47A; in 1D468;1D485;1D489;1D490;1D484; network, the proficient bandwidth estimation method plays a very important role. The research paper represented here presents a splendid method for estimating or measuring Bandwidth in 1D468;1D485;1D489;1D490;1D484; network whose character is decentralized in nature. Contrasting in the centralized formation, the bandwidth estimating in 1D468;1D485;1D489;1D490;1D484; is significant and this eventually makes an influence over the 1D478;1D490;1D47A; of the network communication. The admission control and dynamic bandwidth management method which is presented here, facilitates it with fairness and rate guarantees despite the distributed link layer fair scheduling being absent. Alteration has been made over 1D474;1D468;1D46A; layer and this method is appropriate where the peer-to-peer (1D477;1D7D0;1D477;) multimedia transmissions rates are amended in compliantly fashion.In the research work presented here the architecture of the 1D474;1D468;1D46A; layer has been altered and the data handling capacity has been increased. This technique is adopted to facilitate higher data rate transmission and eliminate congestion over the considerednetwork. The proposed technique implements the splitting of 1D474;1D468;1D46A; into two sub layer where one will be responsible for control data transmission while other effectively transmits the data bits. Thus it results into higher data rate transmission with better accuracy and optimized network throughput. The research work in the presented paper exhibits superior accuracy and is very much effective in bandwidth estimation and management application in multi hop Mobile Ad-H

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    corecore