351 research outputs found

    Hardware-software co-design of an iris recognition algorithm

    Get PDF
    This paper describes the implementation of an iris recognition algorithm based on hardware-software co-design. The system architecture consists of a general-purpose 32- bit microprocessor and several slave coprocessors that accelerate the most intensive calculations. The whole iris recognition algorithm has been implemented on a low-cost Spartan 3 FPGA, achieving significant reduction in execution time when compared to a conventional software-based application. Experimental results show that with a clock speed of 40 MHz, an IrisCode is obtained in less than 523 ms from an image of 640x480 pixels, which is just 20% of the total time needed by a software solution running on the same microprocessor embedded in the architecture.Peer ReviewedPreprin

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    A single-chip FPGA implementation of real-time adaptive background model

    Get PDF
    This paper demonstrates the use of a single-chip FPGA for the extraction of highly accurate background models in real-time. The models are based on 24-bit RGB values and 8-bit grayscale intensity values. Three background models are presented, all using a camcorder, single FPGA chip, four blocks of RAM and a display unit. The architectures have been implemented and tested using a Panasonic NVDS60B digital video camera connected to a Celoxica RC300 Prototyping Platform with a Xilinx Virtex II XC2v6000 FPGA and 4 banks of onboard RAM. The novel FPGA architecture presented has the advantages of minimizing latency and the movement of large datasets, by conducting time critical processes on BlockRAM. The systems operate at clock rates ranging from 57MHz to 65MHz and are capable of performing pre-processing functions like temporal low-pass filtering on standard frame size of 640X480 pixels at up to 210 frames per second

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrĂłnicos embebidos basados en tecnologĂ­a hardware dinĂĄmicamente reconfigurable –disponible a travĂ©s de dispositivos lĂłgicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguraciĂłn que proporcione a la FPGA la capacidad de reconfiguraciĂłn dinĂĄmica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicaciĂłn particionada en tareas multiplexadas en tiempo y en espacio, optimizando asĂ­ su implementaciĂłn fĂ­sica –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estĂĄtico (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalĂșa el flujo de diseño de dicha tecnologĂ­a a travĂ©s del prototipado de varias aplicaciones de ingenierĂ­a (sistemas de control, coprocesadores aritmĂ©ticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotaciĂłn en la industria.Resum Aquesta tesi doctoral estĂ  orientada al disseny de sistemes electrĂČnics empotrats basats en tecnologia hardware dinĂ micament reconfigurable –disponible mitjançant dispositius lĂČgics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguraciĂł que proporcioni a la FPGA la capacitat de reconfiguraciĂł dinĂ mica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicaciĂł particionada en tasques multiplexades en temps i en espai, optimizant aixĂ­ la seva implementaciĂł fĂ­sica –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potĂšncia dissipada– comparada amb altres alternatives basades en hardware estĂ tic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalĂșa el fluxe de disseny d’aquesta tecnologia a travĂ©s del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmĂštics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotaciĂł a la indĂșstria

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    Generalized external interaction with tamper-resistant hardware with bounded information leakage

    Get PDF
    This paper investigates secure ways to interact with tamper-resistant hardware leaking a strictly bounded amount of information. Architectural support for the interaction mechanisms is studied and performance implications are evaluated. The interaction mechanisms are built on top of a recently-proposed secure processor Ascend[ascend-stc12]. Ascend is chosen because unlike other tamper-resistant hardware systems, Ascend completely obfuscates pin traffic through the use of Oblivious RAM (ORAM) and periodic ORAM accesses. However, the original Ascend proposal, with the exception of main memory, can only communicate with the outside world at the beginning or end of program execution; no intermediate information transfer is allowed. Our system, Stream-Ascend, is an extension of Ascend that enables intermediate interaction with the outside world. Stream-Ascend significantly improves the generality and efficiency of Ascend in supporting many applications that fit into a streaming model, while maintaining the same security level.Simulation results show that with smart scheduling algorithms, the performance overhead of Stream-Ascend relative to an insecure and idealized baseline processor is only 24.5%, 0.7%, and 3.9% for a set of streaming benchmarks in a large dataset processing application. Stream-Ascend is able to achieve a very high security level with small overheads for a large class of applications.National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipUnited States. Defense Advanced Research Projects Agency (Clean-slate design of Resilient, Adaptive, Secure Hosts Contract N66001-10-1-4089

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures
    • 

    corecore