6,012 research outputs found

    Investigations of the lower and middle atmosphere at the Arecibo Observatory and a description of the new VHF radar project

    Get PDF
    The atmospheric science research at the Arecibo Observatory is performed by means of (active) radar methods and (passive) optical methods. The active methods utilize the 430 NHz radar, the S-band radar on 2380 MHz, and a recently constructed Very High Frequency (VHF) radar. The passive methods include measurements of the mesopause temperature by observing the rotational emissions from OH-bands. The VHF radar design is discussed

    The Future of High Frequency Circuit Design

    Get PDF
    The cut-off wavelengths of integrated silicon transistors have exceeded the die sizes of the chips being fabricated with them. Combined with the ability to integrate billions of transistors on the same die, this size-wavelength cross-over has produced a unique opportunity for a completely new class of holistic circuit design combining electromagnetics, device physics, circuits, and communication system theory in one place. In this paper, we discuss some of these opportunities and their associated challenges in greater detail and provide a few of examples of how they can be used in practice

    (Invited) mm-wave silicon ICs: An opportunity for holistic design

    Get PDF
    Millimeter-waves integrated circuits offer a unique opportunity for a holistic design approach encompassing RF, analog, and digital, as well as radiation and electromagnetics. The ability to deal with the complete system from the digital circuitry to on-chip antennas and everything in between offers unparalleled opportunities for completely new architectures and topologies, previously impossible due the traditional partitioning of various blocks in conventional design. This opens a plethora of new architectural and system level innovation within the integrated circuit platform. This paper reviews some of the challenges and opportunities for mm-wave ICs and presents several solutions to them

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles

    Microwave Radar-Based Breast Cancer Detection:Imaging in Inhomogeneous Breast Phantoms

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Adaptive channel selection for DOA estimation in MIMO radar

    Full text link
    We present adaptive strategies for antenna selection for Direction of Arrival (DoA) estimation of a far-field source using TDM MIMO radar with linear arrays. Our treatment is formulated within a general adaptive sensing framework that uses one-step ahead predictions of the Bayesian MSE using a parametric family of Weiss-Weinstein bounds that depend on previous measurements. We compare in simulations our strategy with adaptive policies that optimize the Bobrovsky- Zaka{\i} bound and the Expected Cram\'er-Rao bound, and show the performance for different levels of measurement noise.Comment: Submitted to the 25th European Signal Processing Conference (EUSIPCO), 201

    Development of a Real-time Ultra-wideband See Through Wall Imaging Radar System

    Get PDF
    Ultra-Wideband (UWB) See-Through-Wall (STW) technology has emerged as a musthave enabling technology by both the military and commercial sectors. As a pioneer in this area, we have led the research in addressing many of the fundamental STW questions. This dissertation is to investigate and resolve a few hurdles in advancing this technology, and produce a realizable high performance STW platform system, which will aid the STW community to find the ultimate answer through experimental and theoretical work. The architectures of a realizable STW imaging system are thoroughly examined and studied. We present both a conceptual system based on RF instruments and a standalone real-time system based on custom design, which utilize reconfigurable design architecture and allows scaling down/up to a desired UWB operating frequency with little difficulty. The systems will serve as a high performance platform for STW study and other related UWB applications. Along the way to a complete STW system, we have developed a simplified transmission line model for wall characteristic prediction; we have developed a scalable synthetic aperture array including both the RF part and the switch control/synchronization part; we have proposed a cost-effective and efficient UWB data acquisition method for real-time STW application based on equivalent-time sampling method. The measurement results reported here include static image formation and tracking moveable targets behind the wall. Even though digital signal processing to generate radar images is not the focus of this research, simple methods for image formation have been implemented and results are very encouraging
    • …
    corecore