295 research outputs found

    Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems

    Get PDF
    The transition to 100% renewable energy in the future is one of the most important ways of achieving "carbon peaking and carbon neutrality" and of reducing the adverse effects of climate change. In this process, the safe, stable and economical operation of renewable energy generation systems, represented by hydro-, wind and solar power, is particularly important, and has naturally become a key concern for researchers and engineers. Therefore, this book focuses on the fundamental and applied research on the modeling, control, monitoring and diagnosis of renewable energy generation systems, especially hydropower energy systems, and aims to provide some theoretical reference for researchers, power generation departments or government agencies

    Artificial intelligence in wind speed forecasting: a review

    Get PDF
    Wind energy production has had accelerated growth in recent years, reaching an annual increase of 17% in 2021. Wind speed plays a crucial role in the stability required for power grid operation. However, wind intermittency makes accurate forecasting a complicated process. Implementing new technologies has allowed the development of hybrid models and techniques, improving wind speed forecasting accuracy. Additionally, statistical and artificial intelligence methods, especially artificial neural networks, have been applied to enhance the results. However, there is a concern about identifying the main factors influencing the forecasting process and providing a basis for estimation with artificial neural network models. This paper reviews and classifies the forecasting models used in recent years according to the input model type, the pre-processing and post-processing technique, the artificial neural network model, the prediction horizon, the steps ahead number, and the evaluation metric. The research results indicate that artificial neural network (ANN)-based models can provide accurate wind forecasting and essential information about the specific location of potential wind use for a power plant by understanding the future wind speed values

    A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery

    Get PDF
    Predicting future capacities and remaining useful life (RUL) with uncertainty quantification is a key but challenging issue in the applications of battery health diagnosis and management. This paper applies advanced machine-learning techniques to achieve effective future capacities and RUL prediction for lithium-ion batteries with reliable uncertainty management. To be specific, after using the empirical mode decomposition (EMD) method, the original battery capacity data is decomposed into some intrinsic mode functions (IMFs) and a residual. Then the long short term memory (LSTM) sub-model is applied to estimate the residual while the gaussian process regression (GPR) sub-model is utilized to fit the IMFs with the uncertainty level. Consequently, both the long-term dependence of capacity and uncertainty quantification caused by the capacity regenerations can be captured directly and simultaneously. Experimental aging data from different batteries are deployed to evaluate the performance of proposed LSTM+GPR model in comparison with the solo GPR, solo LSTM, GPR+EMD and LSTM+EMD models. Illustrative results demonstrate the combined LSTM+GPR model outperforms other counterparts and is capable of achieving accurate results for both 1-step and multi-step ahead capacity predictions. Even predicting the RUL at the early battery cycle stage, the proposed data-driven approach still presents good adaptability and reliable uncertainty quantification for battery health diagnosis

    Multiple decomposition-aided long short-term memory network for enhanced short-term wind power forecasting.

    Get PDF
    With the increasing penetration of grid-scale wind energy systems, accurate wind power forecasting is critical to optimizing their integration into the power system, ensuring operational reliability, and enabling efficient system asset utilization. Addressing this challenge, this study proposes a novel forecasting model that combines the long-short-term memory (LSTM) neural network with two signal decomposition techniques. The EMD technique effectively extracts stable, stationary, and regular patterns from the original wind power signal, while the VMD technique tackles the most challenging high-frequency component. A deep learning-based forecasting model, i.e. the LSTM neural network, is used to take advantage of its ability to learn from longer sequences of data and its robustness to noise and outliers. The developed model is evaluated against LSTM models employing various decomposition methods using real wind power data from three distinct offshore wind farms. It is shown that the two-stage decomposition significantly enhances forecasting accuracy, with the proposed model achieving R2 values up to 9.5% higher than those obtained using standard LSTM models

    Predicting the Future

    Get PDF
    Due to the increased capabilities of microprocessors and the advent of graphics processing units (GPUs) in recent decades, the use of machine learning methodologies has become popular in many fields of science and technology. This fact, together with the availability of large amounts of information, has meant that machine learning and Big Data have an important presence in the field of Energy. This Special Issue entitled “Predicting the Future—Big Data and Machine Learning” is focused on applications of machine learning methodologies in the field of energy. Topics include but are not limited to the following: big data architectures of power supply systems, energy-saving and efficiency models, environmental effects of energy consumption, prediction of occupational health and safety outcomes in the energy industry, price forecast prediction of raw materials, and energy management of smart buildings

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics
    • …
    corecore