100 research outputs found

    A Link Quality Model for Generalised Frequency Division Multiplexing

    Get PDF
    5G systems aim to achieve extremely high data rates, low end-to-end latency and ultra-low power consumption. Recently, there has been considerable interest in the design of 5G physical layer waveforms. One important candidate is Generalised Frequency Division Multiplexing (GFDM). In order to evaluate its performance and features, system-level studies should be undertaken in a range of scenarios. These studies, however, require highly complex computations if they are performed using bit-level simulators. In this paper, the Mutual Information (MI) based link quality model (PHY abstraction), which has been regularly used to implement system-level studies for Orthogonal Frequency Division Multiplexing (OFDM), is applied to GFDM. The performance of the GFDM waveform using this model and the bit-level simulation performance is measured using different channel types. Moreover, a system-level study for a GFDM based LTE-A system in a realistic scenario, using both a bit-level simulator and this abstraction model, has been studied and compared. The results reveal the accuracy of this model using realistic channel data. Based on these results, the PHY abstraction technique can be applied to evaluate the performance of GFDM based systems in an effective manner with low complexity. The maximum difference in the Packet Error Rate (PER) and throughput results in the abstraction case compared to bit-level simulation does not exceed 4% whilst offering a simulation time saving reduction of around 62,000 times.Comment: 5 pages, 8 figures, accepted in VTC- spring 201

    System level 5G evaluation of MIMO-GFDM in an LTE-A platform

    Get PDF

    System level 5G evaluation of GFDM waveforms in an LTE-A platform

    Get PDF

    Real-Time Waveform Prototyping

    Get PDF
    Mobile Netzwerke der fünften Generation zeichen sich aus durch vielfältigen Anforderungen und Einsatzszenarien. Drei unterschiedliche Anwendungsfälle sind hierbei besonders relevant: 1) Industrie-Applikationen fordern Echtzeitfunkübertragungen mit besonders niedrigen Ausfallraten. 2) Internet-of-things-Anwendungen erfordern die Anbindung einer Vielzahl von verteilten Sensoren. 3) Die Datenraten für Anwendung wie z.B. der Übermittlung von Videoinhalten sind massiv gestiegen. Diese zum Teil gegensätzlichen Erwartungen veranlassen Forscher und Ingenieure dazu, neue Konzepte und Technologien für zukünftige drahtlose Kommunikationssysteme in Betracht zu ziehen. Ziel ist es, aus einer Vielzahl neuer Ideen vielversprechende Kandidatentechnologien zu identifizieren und zu entscheiden, welche für die Umsetzung in zukünftige Produkte geeignet sind. Die Herausforderungen, diese Anforderungen zu erreichen, liegen jedoch jenseits der Möglichkeiten, die eine einzelne Verarbeitungsschicht in einem drahtlosen Netzwerk bieten kann. Daher müssen mehrere Forschungsbereiche Forschungsideen gemeinsam nutzen. Diese Arbeit beschreibt daher eine Plattform als Basis für zukünftige experimentelle Erforschung von drahtlosen Netzwerken unter reellen Bedingungen. Es werden folgende drei Aspekte näher vorgestellt: Zunächst erfolgt ein Überblick über moderne Prototypen und Testbed-Lösungen, die auf großes Interesse, Nachfrage, aber auch Förderungsmöglichkeiten stoßen. Allerdings ist der Entwicklungsaufwand nicht unerheblich und richtet sich stark nach den gewählten Eigenschaften der Plattform. Der Auswahlprozess ist jedoch aufgrund der Menge der verfügbaren Optionen und ihrer jeweiligen (versteckten) Implikationen komplex. Daher wird ein Leitfaden anhand verschiedener Beispiele vorgestellt, mit dem Ziel Erwartungen im Vergleich zu den für den Prototyp erforderlichen Aufwänden zu bewerten. Zweitens wird ein flexibler, aber echtzeitfähiger Signalprozessor eingeführt, der auf einer software-programmierbaren Funkplattform läuft. Der Prozessor ermöglicht die Rekonfiguration wichtiger Parameter der physikalischen Schicht während der Laufzeit, um eine Vielzahl moderner Wellenformen zu erzeugen. Es werden vier Parametereinstellungen 'LLC', 'WiFi', 'eMBB' und 'IoT' vorgestellt, um die Anforderungen der verschiedenen drahtlosen Anwendungen widerzuspiegeln. Diese werden dann zur Evaluierung der die in dieser Arbeit vorgestellte Implementierung herangezogen. Drittens wird durch die Einführung einer generischen Testinfrastruktur die Einbeziehung externer Partner aus der Ferne ermöglicht. Das Testfeld kann hier für verschiedenste Experimente flexibel auf die Anforderungen drahtloser Technologien zugeschnitten werden. Mit Hilfe der Testinfrastruktur wird die Leistung des vorgestellten Transceivers hinsichtlich Latenz, erreichbarem Durchsatz und Paketfehlerraten bewertet. Die öffentliche Demonstration eines taktilen Internet-Prototypen, unter Verwendung von Roboterarmen in einer Mehrbenutzerumgebung, konnte erfolgreich durchgeführt und bei mehreren Gelegenheiten präsentiert werden.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part listThe demand to achieve higher data rates for the Enhanced Mobile Broadband scenario and novel fifth generation use cases like Ultra-Reliable Low-Latency and Massive Machine-type Communications drive researchers and engineers to consider new concepts and technologies for future wireless communication systems. The goal is to identify promising candidate technologies among a vast number of new ideas and to decide, which are suitable for implementation in future products. However, the challenges to achieve those demands are beyond the capabilities a single processing layer in a wireless network can offer. Therefore, several research domains have to collaboratively exploit research ideas. This thesis presents a platform to provide a base for future applied research on wireless networks. Firstly, by giving an overview of state-of-the-art prototypes and testbed solutions. Secondly by introducing a flexible, yet real-time physical layer signal processor running on a software defined radio platform. The processor enables reconfiguring important parameters of the physical layer during run-time in order to create a multitude of modern waveforms. Thirdly, by introducing a generic test infrastructure, which can be tailored to prototype diverse wireless technology and which is remotely accessible in order to invite new ideas by third parties. Using the test infrastructure, the performance of the flexible transceiver is evaluated regarding latency, achievable throughput and packet error rates.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part lis

    Desarrollo de una forma de onda GFDM con radio definida por software

    Get PDF
    In this paper the performance of a Generalized Frequency Division Multiplexing waveform is evaluated when compared to an Orthogonal Frequency Division Multiplexing signal. For the development of the previous waveforms, the GNU radio software and the Software Defined Radio (SDR) equipment USRP N210 are used. Through a spectrum analyzer the power of both waveforms are measured and the Out-of-Band Radiation is analyzed. Then, the results obtained are compared and the advantages and disadvantages of the implementation of GFDM as a waveform within the fifth generation systems are exposed.En este documento se evalúa el desempeño de una forma de onda GFDM (Generalized Frequency Division Multiplexing) que es comparada con una señal OFDM (Orthogonal Frequency Division Multiplexing). Para el desarrollo de las anteriores formas de onda se utilizan el software GNU radio y los equipos de Radio Definida por Software (SDR) USRP N210. Mediante un analizador de espectros se mide la potencia de ambas formas de onda y se analiza la Radiación Fuera de Banda (OOB). Luego, se comparan los resultados obtenidos y se exponen las ventajas e inconvenientes de la implementación de GFDM como forma de onda dentro de los sistemas de quinta generación

    Link level imuslations for 5G remote area scenario

    Get PDF
    Abstract. The main object of this thesis is to utilize the Vienna 5G link-level simulator and to introduce modifications which are needed to include new scenarios, such as remote area case. The Vienna 5G link-level simulator is a simulation platform for promoting 5th generation (5G) research and development for the mobile communications system. This work gives a general overview of the link-level simulator platform to evaluate the average performance of the 5G physical layer (PHY) schemes. In many places across the world, there is no reliable internet connectivity in remote areas. Remote area connectivity is a kind of "missing scenario" of standard 5G solution, which focuses on improved data rate, latency, and massive internet of things (IoT). This work addresses views of connectivity in remote areas with 5G solutions, focusing on wireless radio technologies. The study of 5G physical layer performance evaluation is performed for downlink transmission using single-input and single-output (SISO) techniques. This thesis focused on the performance of waveforms, which can be effectively used in remote area communication systems. The analysis of the simulation results signifies that generalized frequency division multiplexing (GFDM) would be the better option for remote area communication than other waveforms investigated in this study. This work also focused on the performance of channel coding schemes in order to determine the appropriate channel coding scheme for the 5G mobile communication system for medium length message transmission in remote area communication. The polar code appears to be the best possible channel code for medium-length message data transmission in remote areas based on the study of channel coding schemes

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Equalizador híbrido na banda das ondas milimétricas para sistemas GFDM

    Get PDF
    Wireless communication using very-large multiple-input multiple-output (MIMO) antennas has been regarded as one of the enabling technologies for the future mobile communication. It refers to the idea of equipping cellular base stations (BSs) with a very large number of antennas giving the possibility to focusing the transmitted signal energy into very short-range areas, which will provide huge improvements in the capacity, in addition to the spectral and energy efficiency. Concurrently, this demand for high data rates and capacity led to the necessity of exploiting the enormous amount of spectrum in the millimeter wave (mmWave) bands. However, the combination of millimeter-wave communications arrays with a massive number of antennas has the potential to dramatically enhance the features of wireless communication. This combination implies high cost and power consumption in the conventional full digital architecture, where each RF chain is dedicated to one antenna. The solution is the use of a hybrid architecture, where a small number of RF chains are connected to a large number of antennas through a network of phase shifters. On the other hand, another important factor that affect the transmission quality is the modulation technique, which plays an important role in the performance of the transmission process, for instance, GFDM is a flexible non-orthogonal multicarrier modulation concept, that introduces additional degrees of freedom when compared to other multicarrier techniques. This flexibility makes GFDM a promising solution for the future cellular generations, because it can achieve different requirements, such as higher spectrum efficiency, better control of out-of-band (OOB) emissions, as well as achieving low peak to average power ratio (PAPR). In this work, we present an analog-digital transmitter and receiver structures. Considering a GFDM modulation technique to be implemented in the digital part, while in the analog part, we propose a full connected hybrid multiuser linear equalizer, combined with low complexity hybrid precoder for wideband millimeter-wave massive MIMO systems. The hybrid equalizer is optimized by minimizing the mean square error between the hybrid approach and the full digital counterpart. The results show that the performance of the proposed hybrid scheme is very close to the full digital counterpart and the gap reduces as the number of RF chains increases.O uso de um número elevado de antenas, também designado por MIMO massivo, tem sido considerada uma das tecnologias mais promissoras para os futuros sistemas de comunicação sem fios. Esta tecnologia, refere-se à ideia de equipar as estações base (BSs) com um número muito grande de antenas, dando a possibilidade de focar a energia do sinal transmitido em áreas de alcance muito restritas, o que proporcionará grandes melhorias na capacidade, além das espectrais e eficiência energética. Simultaneamente, a exigência por taxas de dados elevadas e capacidade levou à necessidade de explorar uma enorme quantidade de espectro nas bandas de ondas milimétricas (mmWave). A combinação de comunicação na banda das ondas milimétricas com terminais equipados com um grande número de antenas tem o potencial de melhorar drasticamente os recursos da comunicação sem fios. Considerando no entanto uma arquitetura digital, usada em sistemas MIMO convencionais, em que cada cadeia de RF é dedicada a uma antena, implica um custo e um consumo de energia elevados. A solução é o uso de uma arquitetura híbrida, na qual um pequeno número de cadeias de RF é conectado a um grande número de antenas através de um conjunto de deslocadores de fase. Outro fator importante que afeta a qualidade da transmissão é a técnica de modulação usada, que desempenha um papel importante no desempenho do processo de transmissão. O GFDM é um conceito de modulação de portadora múltipla, não ortogonal e flexível, que introduz graus de liberdade adicionais, quando comparado a outras técnicas de portadora múltipla, como o OFDM. Essa flexibilidade faz do GFDM uma solução promissora para as futuras gerações celulares, pois pode atender a diferentes requisitos, como maior eficiência de espectro, melhor controle das emissões fora de banda (OOB), além de atingir baixo rácio de potência média / pico ( PAPR). Neste trabalho, é assumido uma arquitetura hibrida no transmissor e recetor. Considera-se uma técnica de modulação GFDM a ser implementada na parte digital, enquanto na parte analógica, é proposto um equalizador linear híbrido multiutilizador totalmente conectado, i.e., cada cadeia RF está ligada a todas as antenas, combinado com um pré-codificador híbrido, de baixa complexidade para sistemas MIMO massivo de banda larga. O equalizador híbrido é otimizado, minimizando o erro quadrático médio entre a abordagem híbrida e a contraparte totalmente digital. Os resultados mostram que o desempenho do esquema híbrido proposto está muito próximo do equivalente digital, à medida que o número de cadeias de RF aumenta.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Analog radio over fiber solutions for multi-band 5g systems

    Get PDF
    This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.Agência 1Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica
    corecore