1,067 research outputs found

    Variability, Symmetry, and Dynamics in Human Rhythmic Motor Control

    Get PDF
    How humans and other animals control rhythmic behaviors, and locomotion in particular, is one of the grand challenges of neuroscience and biomechanics. And yet remarkably few studies address the fundamental control-systems modeling of locomotor control. This thesis attempts to address several pieces of this grand challenge through the development of experimental, theoretical, and computational tools. Specifically, we focus our attention on three key features of human rhythmic motor control, namely variability, symmetry, and dynamics. Variability: Little is known about how haptic sensing of discrete events, such as heel-strike in walking, in rhythmic dynamic tasks enhances behavior and performance. In order to discover the role of discrete haptic cues on rhythmic motor control performance, we study a virtual paddle juggling behavior. We show that haptic sensing of a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state, but rather by reducing cycle-to-cycle variability. Symmetry: Neglecting evident characteristics of a system can certainly be a modeling convenience, but it may also produce a better statistical model. For example, the dynamics of human locomotion is frequently treated as symmetric about the sagittal plane for modeling convenience. In this work, we test this assumption by examining the statistical consequences of neglecting (or not) bilateral asymmetries in the dynamics of human walking. Indeed, we show that there are statistically significant asymmetries in the walking dynamics of healthy participants (N=8), but that by ignoring these asymmetries and fitting a symmetric model to the data, we arrive at a more consistent and predictive model of human walking. Dynamics: Rhythmic hybrid dynamic behaviors can be observed in a wide variety of biological and robotic systems. Analytic (white-box) modeling tools of such systems are limited to the case when we have a full (and preferably simple) mathematical model that can accurately describe the system dynamics. In contrast, data-driven (block-box) system identification methods have the potential to overcome this fundamental limitation and could play a critical role in describing and analyzing the dynamics of rhythmic behaviors based on experimental data. And yet few tools exist for identifying the dynamics of rhythmic systems from input--output data. In this context, we propose a new formulation for identifying the dynamics of rhythmic hybrid dynamical systems around their limit-cycles by using discrete-time harmonic transfer functions

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Parametric Identification of Hybrid Linear-Time-Periodic Systems

    Get PDF
    In this paper, we present a state-space system identification technique for a class of hybrid LTP systems, formulated in the frequency domain based on input-output data. Other than a few notable exceptions, the majority of studies in the state-space system identification literature (e.g. subspace methods) focus only on LTI systems. Our goal in this study is to develop a technique for estimating time-periodic system and input matrices for a hybrid LTP system, assuming that full state measurements are available. To this end, we formulate our problem in a linear regression framework using Fourier transformations, and estimate Fourier series coefficients of the time-periodic system and input matrices using a least-squares solution. We illustrate the estimation accuracy of our method for LTP system dynamics using a hybrid damped Mathieu function as an example. © 201

    Emergent coordination between humans and robots

    Get PDF
    Emergent coordination or movement synchronization is an often observed phenomenon in human behavior. Humans synchronize their gait when walking next to each other, they synchronize their postural sway when standing closely, and they also synchronize their movement behavior in many other situations of daily life. Why humans are doing this is an important question of ongoing research in many disciplines: apparently movement synchronization plays a role in children’s development and learning; it is related to our social and emotional behavior in interaction with others; it is an underlying principle in the organization of communication by means of language and gesture; and finally, models explaining movement synchronization between two individuals can also be extended to group behavior. Overall, one can say that movement synchronization is an important principle of human interaction behavior. Besides interacting with other humans, in recent years humans do more and more interact with technology. This was first expressed in the interaction with machines in industrial settings, was taken further to human-computer interaction and is now facing a new challenge: the interaction with active and autonomous machines, the interaction with robots. If the vision of today’s robot developers comes true, in the near future robots will be fully integrated not only in our workplace, but also in our private lives. They are supposed to support humans in activities of daily living and even care for them. These circumstances however require the development of interactional principles which the robot can apply to the direct interaction with humans. In this dissertation the problem of robots entering the human society will be outlined and the need for the exploration of human interaction principles that are transferable to human-robot interaction will be emphasized. Furthermore, an overview on human movement synchronization as a very important phenomenon in human interaction will be given, ranging from neural correlates to social behavior. The argument of this dissertation is that human movement synchronization is a simple but striking human interaction principle that can be applied in human-robot interaction to support human activity of daily living, demonstrated on the example of pick-and-place tasks. This argument is based on five publications. In the first publication, human movement synchronization is explored in goal-directed tasks which bare similar requirements as pick-and-place tasks in activities of daily living. In order to explore if a merely repetitive action of the robot is sufficient to encourage human movement synchronization, the second publication reports a human-robot interaction study in which a human interacts with a non-adaptive robot. Here however, movement synchronization between human and robot does not emerge, which underlines the need for adaptive mechanisms. Therefore, in the third publication, human adaptive behavior in goal-directed movement synchronization is explored. In order to make the findings from the previous studies applicable to human-robot interaction, in the fourth publication the development of an interaction model based on dynamical systems theory is outlined which is ready for implementation on a robotic platform. Following this, a brief overview on a first human-robot interaction study based on the developed interaction model is provided. The last publication describes an extension of the previous approach which also includes the human tendency to make use of events to adapt their movements to. Here, also a first human-robot interaction study is reported which confirms the applicability of the model. The dissertation concludes with a discussion on the presented findings in the light of human-robot interaction and psychological aspects of joint action research as well as the problem of mutual adaptation.Spontan auftretende Koordination oder Bewegungssynchronisierung ist ein häufig zu beobachtendes Phänomen im Verhalten von Menschen. Menschen synchronisieren ihre Schritte beim nebeneinander hergehen, sie synchronisieren die Schwingbewegung zum Ausgleich der Körperbalance wenn sie nahe beieinander stehen und sie synchronisieren ihr Bewegungsverhalten generell in vielen weiteren Handlungen des täglichen Lebens. Die Frage nach dem warum ist eine Frage mit der sich die Forschung in der Psychologie, Neuro- und Bewegungswissenschaft aber auch in der Sozialwissenschaft nach wie vor beschäftigt: offenbar spielt die Bewegungssynchronisierung eine Rolle in der kindlichen Entwicklung und beim Erlernen von Fähigkeiten und Verhaltensmustern; sie steht in direktem Bezug zu unserem sozialen Verhalten und unserer emotionalen Wahrnehmung in der Interaktion mit Anderen; sie ist ein grundlegendes Prinzip in der Organisation von Kommunikation durch Sprache oder Gesten; außerdem können Modelle, die Bewegungssynchronisierung zwischen zwei Individuen erklären, auch auf das Verhalten innerhalb von Gruppen ausgedehnt werden. Insgesamt kann man also sagen, dass Bewegungssynchronisierung ein wichtiges Prinzip im menschlichen Interaktionsverhalten darstellt. Neben der Interaktion mit anderen Menschen interagieren wir in den letzten Jahren auch zunehmend mit der uns umgebenden Technik. Hier fand zunächst die Interaktion mit Maschinen im industriellen Umfeld Beachtung, später die Mensch-Computer-Interaktion. Seit kurzem sind wir jedoch mit einer neuen Herausforderung konfrontiert: der Interaktion mit aktiven und autonomen Maschinen, Maschinen die sich bewegen und aktiv mit Menschen interagieren, mit Robotern. Sollte die Vision der heutigen Roboterentwickler Wirklichkeit werde, so werden Roboter in der nahen Zukunft nicht nur voll in unser Arbeitsumfeld integriert sein, sondern auch in unser privates Leben. Roboter sollen den Menschen in ihren täglichen Aktivitäten unterstützen und sich sogar um sie kümmern. Diese Umstände erfordern die Entwicklung von neuen Interaktionsprinzipien, welche Roboter in der direkten Koordination mit dem Menschen anwenden können. In dieser Dissertation wird zunächst das Problem umrissen, welches sich daraus ergibt, dass Roboter zunehmend Einzug in die menschliche Gesellschaft finden. Außerdem wird die Notwendigkeit der Untersuchung menschlicher Interaktionsprinzipien, die auf die Mensch-Roboter-Interaktion transferierbar sind, hervorgehoben. Die Argumentation der Dissertation ist, dass die menschliche Bewegungssynchronisierung ein einfaches aber bemerkenswertes menschliches Interaktionsprinzip ist, welches in der Mensch-Roboter-Interaktion angewendet werden kann um menschliche Aktivitäten des täglichen Lebens, z.B. Aufnahme-und-Ablege-Aufgaben (pick-and-place tasks), zu unterstützen. Diese Argumentation wird auf fünf Publikationen gestützt. In der ersten Publikation wird die menschliche Bewegungssynchronisierung in einer zielgerichteten Aufgabe untersucht, welche die gleichen Anforderungen erfüllt wie die Aufnahme- und Ablageaufgaben des täglichen Lebens. Um zu untersuchen ob eine rein repetitive Bewegung des Roboters ausreichend ist um den Menschen zur Etablierung von Bewegungssynchronisierung zu ermutigen, wird in der zweiten Publikation eine Mensch-Roboter-Interaktionsstudie vorgestellt in welcher ein Mensch mit einem nicht-adaptiven Roboter interagiert. In dieser Studie wird jedoch keine Bewegungssynchronisierung zwischen Mensch und Roboter etabliert, was die Notwendigkeit von adaptiven Mechanismen unterstreicht. Daher wird in der dritten Publikation menschliches Adaptationsverhalten in der Bewegungssynchronisierung in zielgerichteten Aufgaben untersucht. Um die so gefundenen Mechanismen für die Mensch-Roboter Interaktion nutzbar zu machen, wird in der vierten Publikation die Entwicklung eines Interaktionsmodells basierend auf Dynamischer Systemtheorie behandelt. Dieses Modell kann direkt in eine Roboterplattform implementiert werden. Anschließend wird kurz auf eine erste Studie zur Mensch- Roboter Interaktion basierend auf dem entwickelten Modell eingegangen. Die letzte Publikation beschreibt eine Weiterentwicklung des bisherigen Vorgehens welche der Tendenz im menschlichen Verhalten Rechnung trägt, die Bewegungen an Ereignissen auszurichten. Hier wird außerdem eine erste Mensch-Roboter- Interaktionsstudie vorgestellt, die die Anwendbarkeit des Modells bestätigt. Die Dissertation wird mit einer Diskussion der präsentierten Ergebnisse im Kontext der Mensch-Roboter-Interaktion und psychologischer Aspekte der Interaktionsforschung sowie der Problematik von beiderseitiger Adaptivität abgeschlossen

    Spatial and Timing Regulation of Upper-Limb Movements in Rhythmic Tasks

    Get PDF
    Rhythmic movement is vital to humans and a foundation of such activities as locomotion, handwriting, and repetitive tool use. The spatiotemporal regularity characterizing such movements reflects a level of automaticity and coordination that is believed to emerge from mutually inhibitory or other pattern generating neural networks in the central nervous system. Although many studies have provided descriptions of this regularity and have illuminated the types of sensory information that influence rhythmic behavior, an understanding of how the brain uses sensory feedback to regulate rhythmic behavior on a cycle-by-cycle basis has been elusive. This thesis utilizes the model task of paddle juggling, or vertical ball bouncing, to address how three types of feedback---visual, auditory, and haptic---contribute to spatial and temporal regulation of rhythmic upper-limb movements. We use a multi-level approach in accordance with the well-known dictum of Marr and Poggio. The crux of this thesis describes a method and suite of experiments to understand how the brain uses visual, audio, and haptic feedback to regulate spatial or timing regularity, and formulate acycle-by-cycle description of this control: to wit, the nature and algorithms of sensory-feedback guided regulation. Part I motivates our interest in this problem, by discussing the biological ``hardware'' that the nervous system putatively employs in these movements, and reviewing insights from previous studies of paddle juggling that suggest how the ``hardware'' may manifest itself in these behaviors. The central experimental approach of this thesis is to train participants to perform the paddle juggling task with spatiotemporal regularity (in other words, to achieve limit-cycle behavior), and then interrogate how the brain applies regulates closed-loop performance by perturbing task feedback. In Part II, we review the development of a novel hard-real-time virtual-reality juggling simulator that enabled precise spatial and temporal feedback perturbations. We then outline the central experimental approach, in which we perturb spatial feedback of the ball at apex phase (vision), and timing feedback of collision- (audio and haptic) and apex-phase events to understand spatial and timing regulation. Part III describes two experiments that yield the main research findings of this thesis. In Experiment 1, we use a sinusoidal-perturbation-based system identification approach to determine that spatial and timing feedback are used in two dissociable and complementary control processes: spatial error correction and temporal synchronization. In Experiment 2, a combination of sinusoidal and step perturbations is used to establish that these complementary processes obey different dynamics. Namely, spatial correction is a proportional-integral process based on a one-step memory of feedback, while temporal synchronization is a proportional process that is dependent only on the most recent feedback. We close in Part IV with a discussion of how insights and approaches from this thesis can lead to improved rehabilitation approaches and understanding of the physiological basis of rhythmic movement regulation

    Advances in Vibration Analysis Research

    Get PDF
    Vibrations are extremely important in all areas of human activities, for all sciences, technologies and industrial applications. Sometimes these Vibrations are useful but other times they are undesirable. In any case, understanding and analysis of vibrations are crucial. This book reports on the state of the art research and development findings on this very broad matter through 22 original and innovative research studies exhibiting various investigation directions. The present book is a result of contributions of experts from international scientific community working in different aspects of vibration analysis. The text is addressed not only to researchers, but also to professional engineers, students and other experts in a variety of disciplines, both academic and industrial seeking to gain a better understanding of what has been done in the field recently, and what kind of open problems are in this area

    Interactive sonification exploring emergent behavior applying models for biological information and listening

    Get PDF
    Sonification is an open-ended design task to construct sound informing a listener of data. Understanding application context is critical for shaping design requirements for data translation into sound. Sonification requires methodology to maintain reproducibility when data sources exhibit non-linear properties of self-organization and emergent behavior. This research formalizes interactive sonification in an extensible model to support reproducibility when data exhibits emergent behavior. In the absence of sonification theory, extensibility demonstrates relevant methods across case studies. The interactive sonification framework foregrounds three factors: reproducible system implementation for generating sonification; interactive mechanisms enhancing a listener's multisensory observations; and reproducible data from models that characterize emergent behavior. Supramodal attention research suggests interactive exploration with auditory feedback can generate context for recognizing irregular patterns and transient dynamics. The sonification framework provides circular causality as a signal pathway for modeling a listener interacting with emergent behavior. The extensible sonification model adopts a data acquisition pathway to formalize functional symmetry across three subsystems: Experimental Data Source, Sound Generation, and Guided Exploration. To differentiate time criticality and dimensionality of emerging dynamics, are applied between subsystems to maintain scale and symmetry of concurrent processes and temporal dynamics. Tuning functions accommodate sonification design strategies that yield order parameter values to render emerging patterns discoverable as well as , to reproduce desired instances for clinical listeners. Case studies are implemented with two computational models, Chua's circuit and Swarm Chemistry social agent simulation, generating data in real-time that exhibits emergent behavior. is introduced as an informal model of a listener's clinical attention to data sonification through multisensory interaction in a context of structured inquiry. Three methods are introduced to assess the proposed sonification framework: Listening Scenario classification, data flow Attunement, and Sonification Design Patterns to classify sound control. Case study implementations are assessed against these methods comparing levels of abstraction between experimental data and sound generation. Outcomes demonstrate the framework performance as a reference model for representing experimental implementations, also for identifying common sonification structures having different experimental implementations, identifying common functions implemented in different subsystems, and comparing impact of affordances across multiple implementations of listening scenarios
    • …
    corecore