2,106 research outputs found

    System identification of gene regulatory networks for perturbation mitigation via feedback control

    Get PDF
    In Synthetic Biology, the idea of using feedback control for the mitigation of perturbations to gene regulatory networks due to disease and environmental disturbances is gaining popularity. To facilitate the design of such synthetic control circuits, a suitable model that captures the relevant dynamics of the gene regulatory network is essential. Traditionally, Michaelis-Menten models with Hill-type nonlinearities have often been used to model gene regulatory networks. Here, we show that such models are not suitable for the purposes of controller design, and propose an alternative formalism. Using tools from system identification, we show how to build so-called S-System models that capture the key dynamics of the gene regulatory network and are suitable for controller design. Using the identified S-System model, we design a genetic feedback controller for an example gene regulatory network with the objective of rejecting an external perturbation. Using a sine sweeping method, we show how the S-System model can be approximated by a second order linear transfer function and, based on this transfer function, we design our controller. Simulation results using the full nonlinear S-System model of the network show that the designed controller is able to mitigate the effect of external perturbations. Our findings highlight the usefulness of the S-System modelling formalism for the design of synthetic control circuits for gene regulatory networks

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Network resilience

    Full text link
    Many systems on our planet are known to shift abruptly and irreversibly from one state to another when they are forced across a "tipping point," such as mass extinctions in ecological networks, cascading failures in infrastructure systems, and social convention changes in human and animal networks. Such a regime shift demonstrates a system's resilience that characterizes the ability of a system to adjust its activity to retain its basic functionality in the face of internal disturbances or external environmental changes. In the past 50 years, attention was almost exclusively given to low dimensional systems and calibration of their resilience functions and indicators of early warning signals without considerations for the interactions between the components. Only in recent years, taking advantages of the network theory and lavish real data sets, network scientists have directed their interest to the real-world complex networked multidimensional systems and their resilience function and early warning indicators. This report is devoted to a comprehensive review of resilience function and regime shift of complex systems in different domains, such as ecology, biology, social systems and infrastructure. We cover the related research about empirical observations, experimental studies, mathematical modeling, and theoretical analysis. We also discuss some ambiguous definitions, such as robustness, resilience, and stability.Comment: Review chapter

    Causal machine learning for single-cell genomics

    Full text link
    Advances in single-cell omics allow for unprecedented insights into the transcription profiles of individual cells. When combined with large-scale perturbation screens, through which specific biological mechanisms can be targeted, these technologies allow for measuring the effect of targeted perturbations on the whole transcriptome. These advances provide an opportunity to better understand the causative role of genes in complex biological processes such as gene regulation, disease progression or cellular development. However, the high-dimensional nature of the data, coupled with the intricate complexity of biological systems renders this task nontrivial. Within the machine learning community, there has been a recent increase of interest in causality, with a focus on adapting established causal techniques and algorithms to handle high-dimensional data. In this perspective, we delineate the application of these methodologies within the realm of single-cell genomics and their challenges. We first present the model that underlies most of current causal approaches to single-cell biology and discuss and challenge the assumptions it entails from the biological point of view. We then identify open problems in the application of causal approaches to single-cell data: generalising to unseen environments, learning interpretable models, and learning causal models of dynamics. For each problem, we discuss how various research directions - including the development of computational approaches and the adaptation of experimental protocols - may offer ways forward, or on the contrary pose some difficulties. With the advent of single cell atlases and increasing perturbation data, we expect causal models to become a crucial tool for informed experimental design.Comment: 35 pages, 7 figures, 3 tables, 1 bo
    • …
    corecore