76,904 research outputs found

    Toward an Integrated Competence-based System Supporting Lifelong Learning and Employability: Concepts, Model, and Challenges

    Get PDF
    Miao, Y., Van der Klink, M., Boon, J., Sloep, P. B., & Koper, R. (2009). Toward an Integrated Competence-based System Supporting Lifelong Learning and Employability: Concepts, Model, and Challenges. In M. Spaniol, Q. Li, R. Klamma & R. W. H. Lau (Eds.), Proceedings of the 8th International Conference Advances in Web Based Learning - ICWL 2009 (pp. 265-276). August, 19-21, 2009, Aachen, Germany. Lecture Notes in Computer Science 5686; Berlin, Heidelberg: Springer-Verlag.Efficient and effective lifelong learning requires that people can make informed decisions about their continuous personal development in the different stages of their lives. In this paper we state that lifelong learners need to be characterized as decision-makers. In order to improve the quality of their decisions we propose the development of an integrated lifelong learning and employment support system, which traces learners’ competence development and provides a decision support environment. An abstract conceptual model has been developed and the main design ideas have been documented using Z notation. Moreover, we analyzed the main technical challenges for the realization of the target system: competence information fusion, decision analysis models, spatial indexing structures and browsing structures and visualization of competence related information objects.The work on this publication has been sponsored by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Paradox Elimination in Dempster–Shafer Combination Rule with Novel Entropy Function: Application in Decision-Level Multi-Sensor Fusion

    Get PDF
    Multi-sensor data fusion technology in an important tool in building decision-making applications. Modified Dempster–Shafer (DS) evidence theory can handle conflicting sensor inputs and can be applied without any prior information. As a result, DS-based information fusion is very popular in decision-making applications, but original DS theory produces counterintuitive results when combining highly conflicting evidences from multiple sensors. An effective algorithm offering fusion of highly conflicting information in spatial domain is not widely reported in the literature. In this paper, a successful fusion algorithm is proposed which addresses these limitations of the original Dempster–Shafer (DS) framework. A novel entropy function is proposed based on Shannon entropy, which is better at capturing uncertainties compared to Shannon and Deng entropy. An 8-step algorithm has been developed which can eliminate the inherent paradoxes of classical DS theory. Multiple examples are presented to show that the proposed method is effective in handling conflicting information in spatial domain. Simulation results showed that the proposed algorithm has competitive convergence rate and accuracy compared to other methods presented in the literature
    • 

    corecore