16,204 research outputs found

    NeuDetect: A neural network data mining system for wireless network intrusion detection

    Get PDF
    This thesis proposes an Intrusion Detection System, NeuDetect, which applies Neural Network technique to wireless network packets captured through hardware sensors for purposes of real time detection of anomalous packets. To address the problem of high false alarm rate confronted by the current wireless intrusion detection systems, this thesis presents a method of applying the artificial neural networks technique to the wireless network intrusion detection system. The proposed system solution approach is to find normal and anomalous patterns on preprocessed wireless packet records by comparing them with training data using Back-propagation algorithm. An anomaly score is assigned to each packet by calculating the difference between the output error and threshold. If the anomaly score is positive then the wireless packet is flagged as anomalous and is negative then the packet is flagged as normal. If the anomaly score is zero or close to zero it will be flagged as an unknown attack and will be sent back to training process for re-evaluation

    Development of a Reference Design for Intrusion Detection Using Neural Networks for a Smart Inverter

    Get PDF
    The purpose of this thesis is to develop a reference design for a base level implementation of an intrusion detection module using artificial neural networks that is deployed onto an inverter and runs on live data for cybersecurity purposes, leveraging the latest deep learning algorithms and tools. Cybersecurity in the smart grid industry focuses on maintaining optimal standards of security in the system and a key component of this is being able to detect cyberattacks. Although researchers and engineers aim to design such devices with embedded security, attacks can and do still occur. The foundation for eventually mitigating these attacks and achieving more robust security is to identify them reliably. Thus, a high-fidelity intrusion detection system (IDS) capable of identifying a variety of attacks must be implemented. This thesis provides an implementation of a behavior-based intrusion detection system that uses a recurrent artificial neural network deployed on hardware to detect cyberattacks in real time. Leveraging the growing power of artificial intelligence, the strength of this approach is that given enough data, it is capable of learning to identify highly complex patterns in the data that may even go undetected by humans. By intelligently identifying malicious activity at the fundamental behavior level, the IDS remains robust against new methods of attack. This work details the process of collecting and simulating data, selecting the particular algorithm, training the neural network, deploying the neural network onto hardware, and then being able to easily update the deployed model with a newly trained one. The full system is designed with a focus on modularity, such that it can be easily adapted to perform well on different use cases, different hardware, and fulfill changing requirements. The neural network behavior-based IDS is found to be a very powerful method capable of learning highly complex patterns and identifying intrusion from different types of attacks using a single unified algorithm, achieving up to 98% detection accuracy in distinguishing between normal and anomalous behavior. Due to the ubiquitous nature of this approach, the pipeline developed here can be applied in the future to build in more and more sophisticated detection abilities depending on the desired use case. The intrusion detection module is implemented in an ARM processor that exists at the communication layer of the inverter. There are four main components described in this thesis that explain the process of deploying an artificial neural network intrusion detection algorithm onto the inverter: 1) monitoring and collecting data through a front-end web based graphical user interface that interacts with a Digital Signal Processor that is connected to power-electronics, 2) simulating various malicious datasets based on attack vectors that violate the Confidentiality-Integrity-Availability security model, 3) training and testing the neural network to ensure that it successfully identifies normal behavior and malicious behavior with a high degree of accuracy, and lastly 4) deploying the machine learning algorithm onto the hardware and having it successfully classify the behavior as normal or malicious with the data feeding into the model running in real time. The results from the experimental setup will be analyzed, a conclusion will be made based upon the work, and lastly discussions of future work and optimizations will be discussed

    A Lightweight Intrusion Detection System for the Cluster Environment

    Get PDF
    As clusters of Linux workstations have gained in popularity, security in this environment has become increasingly important. While prevention methods such as access control can enhance the security level of a cluster system, intrusions are still possible and therefore intrusion detection and recovery methods are necessary. In this thesis, a system architecture for an intrusion detection system in a cluster environment is presented. A prototype system called pShield based on this architecture for a Linux cluster environment is described and its capability to detect unique attacks on MPI programs is demonstrated. The pShield system was implemented as a loadable kernel module that uses a neural network classifier to model normal behavior of processes. A new method for generating artificial anomalous data is described that uses a limited amount of attack data in training the neural network. Experimental results demonstrate that using this method rather than randomly generated anomalies reduces the false positive rate without compromising the ability to detect novel attacks. A neural network with a simple activation function is used in order to facilitate fast classification of new instances after training and to ease implementation in kernel space. Our goal is to classify the entire trace of a program¡¯s execution based on neural network classification of short sequences in the trace. Therefore, the effect of anomalous sequences in a trace must be accumulated. Several trace classification methods were compared. The results demonstrate that methods that use information about locality of anomalies are more effective than those that only look at the number of anomalies. The impact of pShield on system performance was evaluated on an 8-node cluster. Although pShield adds some overhead for each API for MPI communication, the experimental results show that a real world parallel computing benchmark was slowed only slightly by the intrusion detection system. The results demonstrate the effectiveness of pShield as a light-weight intrusion detection system in a cluster environment. This work is part of the Intelligent Intrusion Detection project of the Center for Computer Security Research at Mississippi State University

    Anomaly detection using prior knowledge: application to TCP/IP traffic

    Get PDF
    This article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.IFIP International Conference on Artificial Intelligence in Theory and Practice - Neural NetsRed de Universidades con Carreras en Informática (RedUNCI

    Password Based a Generalize Robust Security System Design Using Neural Network

    Get PDF
    Among the various means of available resource protection including biometrics, password based system is most simple, user friendly, cost effective and commonly used. But this method having high sensitivity with attacks. Most of the advanced methods for authentication based on password encrypt the contents of password before storing or transmitting in physical domain. But all conventional cryptographic based encryption methods are having its own limitations, generally either in terms of complexity or in terms of efficiency. Multi-application usability of password today forcing users to have a proper memory aids. Which itself degrades the level of security. In this paper a method to exploit the artificial neural network to develop the more secure means of authentication, which is more efficient in providing the authentication, at the same time simple in design, has given. Apart from protection, a step toward perfect security has taken by adding the feature of intruder detection along with the protection system. This is possible by analysis of several logical parameters associated with the user activities. A new method of designing the security system centrally based on neural network with intrusion detection capability to handles the challenges available with present solutions, for any kind of resource has presented

    Implementasi Jaringan Syaraf Tiruan dengan Algoritma Belajar Propagasi Balik sebagai Pendeteksi Serangan pada Intrusion Prevention System<br><br>Implementation of Artficial Neural Network with Backpropagation Learning Algorithm for Attack Detection on Int

    Get PDF
    ABSTRAKSI: Intrusi dalam dunia jaringan komputer merupakan suatu tindakan menembus otoritas atau tindakan melebihi hak akses terhadap suatu sistem komputer. Intrusi ini dapat mengancam kelancaran proses bisnis suatu organisasi atau perusahaan. Salah satu solusi untuk mengatasi intrusi ini adalah dengan menggunakan Intrusion Prevention System (IPS). IPS merupakan perkembangan dari Intrusion Detection System. IPS akan merespon suatu kejadian intrusi dengan tindakan yang dapat menghentikan terjadinya intrusi. Dalam tugas akhir ini dibuat suatu implementasi IPS dengan jaringan syaraf tiruan (JST) sebagai komponen penentu terjadinya intrusi atau serangan. JST dalam IPS diimplementasikan dalam bentuk Snort Dynamic Rules. JST memerlukan pelatihan sebelum dapat diimplementasikan kedalam suatu IPS. Proses training dicoba untuk dilaksanakan dengan algoritma belajar propagasi balik standar. Pengujian dilakukan terhadap bermacam-macam arsitektur JST dengan input berupa informasi packet header. Data untuk pelatihan JST diambil dari DARPA Intrusion Detection Dataset. Terakhir beberapa arsitektur JST dengan algoritma belajar propagasi balik ini dianalisis apakah cocok untuk digunakan dalam bidang IPS. Dalam tugas akhir ini ditemukan bahwa arsitektur JST yang diuji belum dapat diimplementasikan secara baik dalam IPS.Kata Kunci : intrusion prevention system, jaringan syaraf tiruan, propagasi balik.ABSTRACT: In term of computer network, intrusion is an action to break the authority or to exceed the privilege in computer system. Intrusion can threat the business process work flow in the organization or company. Intrusion Prevention System (IPS) is a solution to overcome this issue. IPS is the successor of Intrusion Detection System. IPS will respond the intrusion event by stopping the intrusion. In this thesis there are IPS developed by implementing artificial neural network (ANN) as the component to determine intrusion/attack. However, the ANN need to be trained before it can be implemented in IPS. Training is conducted by using standard backpropagation learning algorithm. The experiment involves several ANN architecture with packet header information as the input. The training data is taken from DARPA Intrusion Detection Dataset. Finally, the ANN architectures in the experiment are evaluated for the feasibility to be implemented in IPS. This thesis discovered that some ANN architectures in the experiment are not good enough to be implemented in IPS.Keyword: intrusion prevention system, artificial neural network,backpropagation

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Anomaly detection using prior knowledge: application to TCP/IP traffic

    Get PDF
    This article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.IFIP International Conference on Artificial Intelligence in Theory and Practice - Neural NetsRed de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore