189 research outputs found

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria

    Effects of Aging and Spectral Shaping on the Sub-cortical (Brainstem) Differentiation of Contrastive Stop Consonants

    Get PDF
    Purpose: The objectives of this dissertation are to: (1) evaluate the influence of aging on the sub-cortical (brainstem) differentiation of voiced stop consonants (i.e. /b-d-g/); (2) determine whether potential aging deficits at the brainstem level influence behavioral identification of the /b-d-g/ stimuli, (3) investigate whether spectral shaping diminishes any aging impairments at the brainstem level; and (4) if so, whether minimizing these deficits improves the behavioral identification of the speech stimuli. Subjects: Behavioral and electrophysiological responses were collected from 11 older adults (\u3e 50 years old) with near-normal to normal hearing and were compared to those of 16 normal-hearing younger adults (control group). Stimuli and Methods: Speech- evoked auditory brainstem responses (Speech-ABRs) were recorded for three 100-ms long /b-d-g/ consonant-vowel exemplars in unshaped and shaped conditions, for a total of six stimuli. Frequency-dependent spectral-shaping enhanced the second formant (F2) transition relative to the rest of the stimulus, such that it reduced gain for low frequencies; and increased gain for mid and high frequencies, the frequency region of the F2 transition in the /b-d-g/ syllables. Behavioral identification of 15-step perceptual unshaped and shaped /b-d-g/ continua was assessed by generating psychometric functions in order to quantify stimuli perception. Speech ABR peak amplitudes and latencies and stop consonant differentiation scores were measured for 6 stimuli (3 unshaped stimuli and 3 shaped stimuli). Summary of Findings: Older adults exhibited more robust categorical perception, and subtle sub-cortical deficits when compared to younger adults. Individual data showed fewer expected latency patterns for the /b-d-g/ speech-ABRs in older adults as opposed to younger adults, especially for major peaks. Spectral shaping improved the stop consonant differentiation score for major peaks in older adults, such that it moved older adults in the direction of the younger adults’ responses. Conclusion: Sub-cortical impairments at least those measured in this study do not seem to influence the behavioral differentiation of stop consonants in older adults. On the other hand, cue enhancement by spectral shaping seems to overcome some of the deficits noted at the electrophysiological level. However, due to a possible ceiling effect, improvements to the originally robust perception of older adults, at the behavioral level were not found. Significance: Aging seems to reduce the sub-cortical responsiveness to dynamic spectral cues without distorting the spectral coding as evident by the “reparable” age-related changes seen at the electrophysiological level. Cue enhancement appears to increase the neural responsiveness of aged but intact neurons, yielding a better sub-cortical differentiation of stop consonants

    Interaural differences in sensory processing at lower levels of the auditory system and their association with the right ear advantage for dichotic listening and speech perception in noise among older adults : an exploratory study

    Full text link
    Un biais fonctionnel entre les oreilles droites et gauches a été largement documenté, avec un avantage de l'oreille droite (AOD) dans les tâches perceptives, en particulier celles utilisant le traitement verbal. Les sons complexes tels que la parole sont perçus plus facilement dans l'oreille droite (OD) que dans l'oreille gauche (OG) pour les tâches d’écoute dichotique (ED) ainsi que pour les tâches de perception de la parole dans le bruit (PDB). Des études sur les tâches d’ED ont démontré que le vieillissement est associé à une réduction globale des performances des deux oreilles, avec un déficit de performance plus important pour les stimuli présentés à l'OG par rapport à ceux présentés à l'OD entraînant une augmentation de l’AOD. Ce déficit à l'OG pourrait être le résultat d'une baisse de l'efficacité du transfert inter hémisphérique d'informations auditives via le corps calleux due au vieillissement ou de changements liés au vieillissement dans les fonctions cognitives. Cependant, des preuves chez les jeunes adultes ayant une audition normale suggèrent que les différences interaurales (DI) dans le traitement sensoriel au niveau des parties inférieures du système auditif pourraient également expliquer l'ampleur de l’AOD pour les tâches d’ED. L'objectif principal de cette thèse est d'étudier si les DI dans le traitement sensoriel aux niveaux inférieurs du système auditif sont associés à l'ampleur de l’AOD chez les personnes âgées. De plus, ce projet vise également à déterminer si les DI dans le traitement sensoriel au niveau des parties inférieures du système auditif sont associées aux processus de perception de la PDB chez les personnes âgées. Pour ce faire, 70 personnes âgées ont participé à cette étude. Tous les participants ont été évalué avec une batterie complète de tests auditifs examinant les seuils de sons purs, les émissions otoacoustiques évoquées transitoires avec et sans stimulation acoustique controlatérale, la réponse auditive du tronc cérébral et la performance sur les tâches d'ED et de perception de la PDB. Afin de contrôler la fonction cognitive, les habiletés cognitives telles que la vitesse de traitement, la flexibilité cognitive et la mémoire de travail ont également été évaluées. Les DI dans le traitement sensoriel aux niveaux inférieurs du système auditif ont été dérivées en calculant la différence entre l’OD et l’OG pour chacune des mesures auditives. Des modèles de régression bivariées et multivariées ont été réalisés en intégrant les variables d’habiletés cognitives dans les modèles de régression. Les résultats ont révélé que la DI pour les seuils de sons purs et la DI pour les émissions otoacoustiques évoquées transitoires avec suppression étaient associés significativement à l'ampleur de l’AOD chez les personnes âgées. De même, la DI pour les émissions otoacoustiques évoquées transitoires et la DI pour la réponse auditive du tronc cérébral expliquent la performance de la perception de la PDB chez les personnes âgées. De plus, les résultats ont révélé que les habiletés cognitives contribuent de manière significative à l'ampleur de l’AOD ainsi que pour la performance de la perception de la PDB chez les personnes âgées. Dans l'ensemble, la présente thèse fournit des données qui suggèrent que les DI dans le traitement sensoriel au niveau des parties inférieures du système auditif explique en partie l'ampleur de l’AOD pour les tâches d’ED ainsi que les problèmes de perception de la PDB chez les personnes âgées.A functional bias between the right and left ears has been widely documented, with a right-ear advantage (REA) in perceptual tasks, particularly those employing verbal processing. Complex sounds such as speech are more accurately perceived in the right ear (RE) compared to the left ear (LE) for dichotic listening (DL) and speech perception in noise (SIN) tasks. Although previous studies have shown that aging is associated with an overall decline in DL performance in both ears among older adults, the left ear (LE) performance often decreases more dramatically relative to the right ear (RE) performance, causing an increased REA for speech stimuli. This greater LE deficit may be the result of age-related changes in (A) cognitive functions; (B) functions of the right hemisphere (RH); and /or (C) the efficiency of interhemispheric transfer of auditory information via the corpus callosum. However, evidence in normal hearing young adults suggest that interaural difference (ID) in sensory processing at lower portions of the auditory system might also explain the magnitude of the REA for DL. The main aim of this thesis is to investigate whether ID in sensory processing at lower levels of the auditory system are associated with the magnitude of the REA for DL among older adults. In addition, this project aimed to investigate whether ID in sensory processing at lower levels of the auditory system is associated with SIN performance in older adults. A total of 70 older adults participated in this study. To assess sensory processing at lower levels of the auditory system, hearing thresholds, transient evoked otoacoustic emission (TEOAE), contralateral suppression of TEOAE, a proxy measure of medial olivocochlear (MOC) activation and click-and-speech auditory brainstem response to speech stimuli were measured in both ears separately. The ID in sensory processing was derived by calculating the difference between the right and left ears for each auditory measure. The mobile device app version for iPhone of the Bergen Dichotic Listening test, the iDichotic, was used to evaluate DL. In addition, SIN performance was evaluated with the hearing-in-noise test (HINT). With the aim to control for cognitive function, cognitive abilities such as speed of processing, cognitive flexibility and working memory were also evaluated. Bivariate and multivariate regression models were performed, and cognitive measures were accounted for in the regression models. Results revealed that ID in pure-tone thresholds and ID in MOC-induced TEOAE suppression were significantly associated with the magnitude of the REA for DL among older adults. Similarly, ID in TEOAE and ID in speech-ABR measures explained SIN performance in older adults. In addition, results revealed that cognitive measures significantly contributed to the magnitude of the REA for DL and SIN performance in older adults. The present thesis provides evidence indicating that ID in sensory processing at lower levels of the auditory system partially explain the magnitude of the REA for DL as well as SIN performance among older adults

    Microelectronic circuits for noninvasive ear type assistive devices

    Get PDF
    An ear type system and its circuit realization with application as new assistive devices are investigated. The auditory brainstem responses obtained from clinical hearing measurements are utilized for which the ear type systems mimicking the physical and behavioral characteristics of the individual auditory system are developed. In the case that effects from the hearing loss and disorder can be detected via the measured responses, differentiations between normal and impaired characteristics of the human auditory system are made possible from which the new noninvasive way of correcting these undesired effects is proposed. The ear type system of auditory brainstem response is developed using an adaptation of the nonlinear neural network architecture and the system for making a correction is realized using the derived inverse of neural network. Microelectronic circuits of the systems are designed and simulated showing a possibility of developing into a hearing aid type device which potentially helps hearing impaired patients in an alternate and noninvasive useful way

    Examining monaural and binaural measures of phase-locking as a function of age

    Get PDF
    Understanding speech in the presence of background noise is a common complaint of middle-aged and older listeners with clinically normal audiograms. There is great interest in understanding how age-related changes in auditory physiology make it harder for older adults to understand speech in difficult listening situations, compared to young listeners. It was recently reported that middle-aged and older normal-hearing listeners showed frequency-dependent, age-related declines in the behavioral and physiological detection of interaural phase differences (Grose & Mamo, 2010; Ross et al, 2007). There is also evidence of an age-related, frequency-dependent decline in the frequency-following response (FFR) (Clinard et al., 2010), an auditory evoked potential dependent on phase-locked neural activity (Worden & Marsh, 1968). Age-related declines in binaural processing may be related to age-related declines in phase locking. This study used the frequency-following response (FFR) to examine monaural and binaural phase locking in subjects of two groups; younger and middle-aged. Responses were obtained from 300 ms toneburst stimuli at four frequencies (500, 750, 1000, and 1125 Hz) at an intensity of 80 dB SPL. FFRs were analyzed for response amplitude, binaural amplitude differences, and stimulus-to-response cross-correlations. Results showed FFR amplitude decreased as frequency increases and, at 500 Hz, the summed left and right monaural FFR amplitudes were smaller than the binaural FFR amplitude, which is in contrast to previous literature (Clinard, 2010; Fowler, 2004; Krishnan & McDaniel, 1998). Results further indicated that the stimulus-to-response correlation coefficient is greatest for 500 Hz and declines as frequency increases. There was no significant difference between the age groups but perhaps a broader age range including older adults would show the hypothesized amplitude differences between groups. Further, results may be different than expected due to minimal difference between summed monaural and binaural processing at 750, 1000, and 1125 Hz. When looking at the data there is a larger difference between groups at 1125 Hz and, while it is not significantly different, it may be that a broader frequency range (e.g., 1250 Hz or above) and age range (e.g. 0 to 100), may be more effective at revealing a group x frequency interaction

    Modified cyclic shift tree denoising technique with fewer number of sweep for wave V detection

    Get PDF
    Nowadays, in developing countries Newborn Hearing Screening (NHS) has become one of the most important recommendations in modern pediatric audiology due to the important of early detection for newborn as the first six month of age are the critical period for learning communication. Auditory Brainstem Response (ABR) is an electrophysiological response in the electroencephalography generated in the brainstem in response to the acoustical stimulus. The conventional method used previously was accurate, but it is time consuming especially with the presence of noise interference. The objective of this research is to reduce screening time by implementing enhanced signal processing method and also to reduce the influence of noise interference. This thesis applies Wavelet Kalman Filter (WKF), Cyclic Shift Tree Denoising (CSTD) and Modified Cyclic Shift Tree Denoising (MCSTD) to overcome these problems. The modified approach MSCTD is a modification from CSTD where it is a combination of the wavelet, KF and CSTD. The modified approach was compared to the averaging, WKF and CSTD to analyze an effective wavelet method for denoising that can give the rapid and accurate extraction of ABRs. Results show that the MCSTD outperform the other methods and giving the highest SNR value and able to detect wave V until reduce sweeps number of 512 and 1024 respectively for chirp and click stimulus

    Real-time detection of auditory : steady-state brainstem potentials evoked by auditory stimuli

    Get PDF
    The auditory steady-state response (ASSR) is advantageous against other hearing techniques because of its capability in providing objective and frequency specific information. The objectives are to reduce the lengthy test duration, and improve the signal detection rate and the robustness of the detection against the background noise and unwanted artefacts.Two prominent state estimation techniques of Luenberger observer and Kalman filter have been used in the development of the autonomous ASSR detection scheme. Both techniques are real-time implementable, while the challenges faced in the application of the observer and Kalman filter techniques are the very poor SNR (could be as low as −30dB) of ASSRs and unknown statistics of the noise. Dual-channel architecture is proposed, one is for the estimate of sinusoid and the other for the estimate of the background noise. Simulation and experimental studies were also conducted to evaluate the performances of the developed ASSR detection scheme, and to compare the new method with other conventional techniques. In general, both the state estimation techniques within the detection scheme produced comparable results as compared to the conventional techniques, but achieved significant measurement time reduction in some cases. A guide is given for the determination of the observer gains, while an adaptive algorithm has been used for adjustment of the gains in the Kalman filters.In order to enhance the robustness of the ASSR detection scheme with adaptive Kalman filters against possible artefacts (outliers), a multisensory data fusion approach is used to combine both standard mean operation and median operation in the ASSR detection algorithm. In addition, a self-tuned statistical-based thresholding using the regression technique is applied in the autonomous ASSR detection scheme. The scheme with adaptive Kalman filters is capable of estimating the variances of system and background noise to improve the ASSR detection rate

    Neural Circuitry Deficits Associated With Dysfunctional Myelin

    Get PDF
    In the current study, we have generated mutant mice that lack Claudin 11 (Cldn11) tight junctions in CNS myelin sheaths. In myelin sheaths, Cldn11 forms tight junctions located along the outer and inner edges of the membrane spiral, preventing ions and small molecules from entering the intramyelinic space. The function of Cldn11 tight junctions is to improve the passive properties of the myelin membrane, by increasing membrane resistance and reducing capacitance, thereby improving the speed of saltatory conduction. In the absence of Cldn11, conduction velocity is slowed, most dramatically in small diameter myelinated fibers, somewhat analogous to reducing myelin thickness. Notably, the absence of Cldn11 is without degenerative myelin pathology, enabling direct study on the impact of dysfunctional myelin on neural processing. Undoubtedly, slowed conduction velocity along myelinated axons increases temporal dispersion and, consequently, degrades information transfer between neural circuits. Herein, this dissertation work explores the impact of dysfunctional myelin on neural processing in the conserved integration circuit of the auditory brainstem. We find that dysfunctional myelin alters neural processing, generating an inability to lateralize sound sources on the azimuth plane. Extrapolating this information to higher order circuitry within the cortex, we find that dysfunctional myelin generates a disconnection between brain regions, manifesting in behavioral abnormalities and alteration in neurotransmitter levels. Together, these data demonstrate that non-degenerative changes in myelin membrane passive properties can lead to neurochemistry changes that perturb behavior/perception. Second, they have important implications for the etiology of behavioral disorders in general, and more specifically for the behavioral components of hypomyelinating and demyelinating diseases like multiple sclerosis

    The Human Auditory System

    Get PDF
    This book presents the latest findings in clinical audiology with a strong emphasis on new emerging technologies that facilitate and optimize a better assessment of the patient. The book has been edited with a strong educational perspective (all chapters include an introduction to their corresponding topic and a glossary of terms). The book contains material suitable for graduate students in audiology, ENT, hearing science and neuroscience

    Effects of Phase-Locking Deficits on Speech Recognition in Older Adults With Presbycusis

    Get PDF
    Objective: People with presbycusis (PC) often report difficulties in speech recognition, especially under noisy listening conditions. Investigating the PC-related changes in central representations of envelope signals and temporal fine structure (TFS) signals of speech sounds is critical for understanding the mechanism underlying the PC-related deficit in speech recognition. Frequency-following responses (FFRs) to speech stimulation can be used to examine the subcortical encoding of both envelope and TFS speech signals. This study compared FFRs to speech signals between listeners with PC and those with clinically normal hearing (NH) under either quiet or noise-masking conditions.Methods: FFRs to a 170-ms speech syllable /da/ were recorded under either a quiet or noise-masking (with a signal-to-noise ratio (SNR) of 8 dB) condition in 14 older adults with PC and 13 age-matched adults with NH. The envelope (FFRENV) and TFS (FFRTFS) components of FFRs were analyzed separately by adding and subtracting the alternative polarity responses, respectively. Speech recognition in noise was evaluated in each participant.Results: In the quiet condition, compared with the NH group, the PC group exhibited smaller F0 and H3 amplitudes and decreased stimulus-response (S-R) correlation for FFRENV but not for FFRTFS. Both the H2 and H3 amplitudes and the S-R correlation of FFRENV significantly decreased in the noise condition compared with the quiet condition in the NH group but not in the PC group. Moreover, the degree of hearing loss was correlated with noise-induced changes in FFRTFS morphology. Furthermore, the speech-in-noise (SIN) threshold was negatively correlated with the noise-induced change in H2 (for FFRENV) and the S-R correlation for FFRENV in the quiet condition.Conclusion: Audibility affects the subcortical encoding of both envelope and TFS in PC patients. The impaired ability to adjust the balance between the envelope and TFS in the noise condition may be part of the mechanism underlying PC-related deficits in speech recognition in noise. FFRs can predict SIN perception performance
    corecore