16,161 research outputs found

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage

    Full text link
    A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin

    San Francisco Bay: Preparing for the next level

    Get PDF
    This report provides new insights on the impacts climate change poses on San Francisco Bay, the opportunities this challenge brings and some potential guidelines on how to move forward, as the Bay Area continues to position itself in leading the way nationally and internationally on climate change adaptation. This report is also a landmark in the cooperation between the Netherlands and California on climate change adaptation. A team of professionals from both sides of the ocean has worked on this projec

    Perspectives on subnational carbon and climate footprints: A case study of Southampton, UK

    Get PDF
    Sub-national governments are increasingly interested in local-level climate change management. Carbon- (CO2 and CH4) and climate-footprints—(Kyoto Basket GHGs) (effectively single impact category LCA metrics, for global warming potential) provide an opportunity to develop models to facilitate effective mitigation. Three approaches are available for the footprinting of sub-national communities. Territorial-based approaches, which focus on production emissions within the geo-political boundaries, are useful for highlighting local emission sources but do not reflect the transboundary nature of sub-national community infrastructures. Transboundary approaches, which extend territorial footprints through the inclusion of key cross boundary flows of materials and energy, are more representative of community structures and processes but there are concerns regarding comparability between studies. The third option, consumption-based, considers global GHG emissions that result from final consumption (households, governments, and investment). Using a case study of Southampton, UK, this chapter develops the data and methods required for a sub-national territorial, transboundary, and consumption-based carbon and climate footprints. The results and implication of each footprinting perspective are discussed in the context of emerging international standards. The study clearly shows that the carbon footprint (CO2 and CH4 only) offers a low-cost, low-data, universal metric of anthropogenic GHG emission and subsequent management

    The development of river-based intermodal transport: the case of Ukraine

    Get PDF
    It should be noted that the (inland waterway transport) IWT in Ukraine currently is in its infancy in comparison with other land based transport means (rail and road) and with other countries that possess navigable rivers. This paper is an extension of the research initiated by Grushevska and Notteboom (2015) where the concepts of intermediacy and centrality were introduced in order to assess the role of Ukraine in the global and regional transport networks. The list of key obstacles for Ukraine’s intermediacy function included IWT related barriers such as: (i) deficient inland waterway infrastructure, (ii) high IWT costs (fees for bridges, locks etc.) and (iii) pilotage charges. To date the transportation to/from ports is mainly fulfilled by road or by rail based multimodal transport solutions. We present the unutilized potential of Ukrainian IWT that needs to be efficiently exploited for the benefit of the national economy and national transport system. This study intends to enrich the limited academic research on IWT systems in a transition stage, as exemplified by the case of Ukraine

    Models of Transportation and Land Use Change: A Guide to the Territory

    Get PDF
    Modern urban regions are highly complex entities. Despite the difficulty of modeling every relevant aspect of an urban region, researchers have produced a rich variety models dealing with inter-related processes of urban change. The most popular types of models have been those dealing with the relationship between transportation network growth and changes in land use and the location of economic activity, embodied in the concept of accessibility. This paper reviews some of the more common frameworks for modeling transportation and land use change, illustrating each with some examples of operational models that have been applied to real-world settings.Transport, land use, models, review network growth, induced demand, induced supply

    Infrastructure dynamics: A selected bibliography

    Get PDF
    The term infrastructure is used to denote the set of life support and public service systems which is necessary for the development of growth of human settlements. Included are some basic references in the field of dynamic simulation, as well as a number of relevant applications in the area of infrastructure planning. The intent is to enable the student or researcher to quickly identify such applications to the extent necessary for initiating further work in the field
    corecore