199,259 research outputs found

    Overview of environmental test plans for Space Station Freedom work package 4

    Get PDF
    The generation and distribution of electric power for Space Station Freedom (SSF) is critical to the station's success. Work Package 4 (WP-04) has the responsibility for the design, development, test, and delivery of the Electric Power System (EPS) for the SSF. During launch, assembly, and operation, the EPS will be subjected to various environments. A test and verification approach has been developed to assure that the EPS will function in these environments. An overview of that test program is presented with emphasis on environmental testing of hardware. Two key areas of the test program are highlighted in the overview. One area is the verification of the Solar Power Module (SPM) and associated cargo element hardware. This area includes detailing the plans for development and qualification testing of the SPM hardware. One series of tests, including modal and acoustic, has been completed on a development cargo element. Another area highlighted is the acceptance testing of high-power Orbital Replacement Units (ORU). The environmental test equipment plans are presented and reviewed in light of an aggressive production rate, which delivers ORU's to the WP-04 and other Space Station Work Packages. Through implementing the test program as outlined, the EPS hardware will be certified for flight and operation on the Space Station Freedom

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Advanced load-testing techniques for a science archive

    Get PDF
    Performance goals for data archive systems need to be established early in the design process to ensure stability and acceptable response throughput. Load testing is one technique used to measure the progress towards these performance goals. Providing resources for load-test planning is critical, and this planning must include feasibility studies, tool analyses, and generation of an overall load-test strategy. This strategy is much different for science data archives than other systems, including commercial websites and high-volume data centers. This paper will provide an overview of the load testing performed on the Spitzer Space Telescope's science archive, which is part of Science Operations System at the Spitzer Science Center (SSC). Methods used for planning and conducting SSC load tests will be presented, and advanced load-testing techniques will be provided to address runtime issues and enhance verification results. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    In-flight testing of the space shuttle orbiter thermal control system

    Get PDF
    In-flight thermal control system testing of a complex manned spacecraft such as the space shuttle orbiter and the considerations attendant to the definition of the tests are described. Design concerns, design mission requirements, flight test objectives, crew vehicle and mission risk considerations, instrumentation, data requirements, and real-time mission monitoring are discussed. An overview of the tests results is presented

    Symbolic QED Pre-silicon Verification for Automotive Microcontroller Cores: Industrial Case Study

    Full text link
    We present an industrial case study that demonstrates the practicality and effectiveness of Symbolic Quick Error Detection (Symbolic QED) in detecting logic design flaws (logic bugs) during pre-silicon verification. Our study focuses on several microcontroller core designs (~1,800 flip-flops, ~70,000 logic gates) that have been extensively verified using an industrial verification flow and used for various commercial automotive products. The results of our study are as follows: 1. Symbolic QED detected all logic bugs in the designs that were detected by the industrial verification flow (which includes various flavors of simulation-based verification and formal verification). 2. Symbolic QED detected additional logic bugs that were not recorded as detected by the industrial verification flow. (These additional bugs were also perhaps detected by the industrial verification flow.) 3. Symbolic QED enables significant design productivity improvements: (a) 8X improved (i.e., reduced) verification effort for a new design (8 person-weeks for Symbolic QED vs. 17 person-months using the industrial verification flow). (b) 60X improved verification effort for subsequent designs (2 person-days for Symbolic QED vs. 4-7 person-months using the industrial verification flow). (c) Quick bug detection (runtime of 20 seconds or less), together with short counterexamples (10 or fewer instructions) for quick debug, using Symbolic QED

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG
    • …
    corecore