450 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    A comparative investigation on performance and which is the preferred methodology for spectrum management; geo-location spectrum database or spetrum sensing

    Get PDF
    A Research Report submitted to the Faculty of Engineering and the Built Environment, University of Witwatersrand, in the partial fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2015.Due to the enormous demand for multimedia services which relies hugely on the availability of spectrum, service providers and technologist are devising a means or method which is able to fully satisfy these growing demands. The availability of spectrum to meet these demands has been a lingering issue for the past couple of years. Many would have it tagged as spectrum scarcity but really the main problem is not how scarce the spectrum is but how efficiently allocated to use is the spectrum. Once such inefficiency is tackled effectively, then we are a step closer in meeting the enormous demands for uninterrupted services. However, to do so, there are techniques or methodologies being developed to aid in the efficient management of spectrum. In this research project, two methodologies were considered and the efficiency of these methodologies in the areas of spectrum management. The Geo-location Spectrum Database (GLSD) which is the most adopted technique and the Cognitive radio spectrum sensing technique are currently the available techniques in place. The TV whitespaces (TVWS) was explored using both techniques and certain comparison based on performances; implementation, practicability, cost and flexibility were used as an evaluation parameter in arriving at a conclusion. After accessing both methodologies, conclusions were deduced on the preferred methodology and how its use would efficiently solve the issues encountered in spectrum managemen

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    A petri nets based design of cognitive radios using distributed signal processing

    Get PDF
    AbstractReconfigurability for transceivers for wireless access networks like Bluetooth, WiMAX and W-LAN will become increasingly important. An appropriately flexible and reliable software architecture, allowing the concurrent processing of different controlling tasks for wireless terminals will hence be an important asset. Already during the 1980s reconfigurable receivers were developed for radio intelligence in the short wave range and the concept of software radio (SR) was born. A software defined radio (SDR) is a practical version of an SR: The received signals are sampled after a suitable band selection filter, usually in the base band or a low intermediate frequency band. The signal processing in both SR and SDR requires a considerable amount of concurrent processes. Since Petri nets (PNs) are both simple and strong tools for the description and the design of such concurrent processes, it is recommendable to deploy them for SDR. SDRs have paved the way towards cognitive radios (CRs), which are based on SDRs that additionally sense their environments, track changes, and react upon their findings. A CR is an autonomous unit in a communications environment that frequently exchanges information with the networks it is able to access as well as with other CRs. In this communication, the authors will introduce a realization concept for a CR which forms the basis of a hardware/firmware demonstrator developed by the authors. This demonstrator makes use of a digital signal processor (DSP) which forms the core of the design and flexibly programmable hardware accelerators based on field programmable gate arrays (FPGAs). The authors will describe the solution also in view of the recent developments of IEEE 802.2

    Building accurate radio environment maps from multi-fidelity spectrum sensing data

    Get PDF
    In cognitive wireless networks, active monitoring of the wireless environment is often performed through advanced spectrum sensing and network sniffing. This leads to a set of spatially distributed measurements which are collected from different sensing devices. Nowadays, several interpolation methods (e.g., Kriging) are available and can be used to combine these measurements into a single globally accurate radio environment map that covers a certain geographical area. However, the calibration of multi-fidelity measurements from heterogeneous sensing devices, and the integration into a map is a challenging problem. In this paper, the auto-regressive co-Kriging model is proposed as a novel solution. The algorithm is applied to model measurements which are collected in a heterogeneous wireless testbed environment, and the effectiveness of the new methodology is validated

    FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP

    Get PDF
    In this chapter, we propose a novel design of scalable and real-time data acquisition software architecture for software-defined radio (SDR) using universal software radio peripheral (USRP). The software has been designed and tested in multi-thread model, using LabVIEW, which guarantees real-time performance and efficiency. With the help of this design, we have been able to improve the stability of the system besides providing a reconfigurable and flexible architecture. Wireless transfer of sensitive data using communication is not a very safe option. In this chapter, we aim to provide a safe and private wireless transmission between two terminals using the SDR approach and verifying the results in real-world environment with the use of USRP. The novel design being presented here can be used to transfer (random data, text or an image) encoded with different forward error correction (FEC) codes, which is then verified at the receiving terminal and then decoded accordingly to produce the desired result
    corecore