3,695 research outputs found

    Fixed-Mobile Convergence in the 5G era: From Hybrid Access to Converged Core

    Get PDF
    The availability of different paths to communicate to a user or device introduces several benefits, from boosting enduser performance to improving network utilization. Hybrid access is a first step in enabling convergence of mobile and fixed networks, however, despite traffic optimization, this approach is limited as fixed and mobile are still two separate core networks inter-connected through an aggregation point. On the road to 5G networks, the design trend is moving towards an aggregated network, where different access technologies share a common anchor point in the core. This enables further network optimization in addition to hybrid access, examples are userspecific policies for aggregation and improved traffic balancing across different accesses according to user, network, and service context. This paper aims to discuss the ongoing work around hybrid access and network convergence by Broadband Forum and 3GPP. We present some testbed results on hybrid access and analyze some primary performance indicators such as achievable data rates, link utilization for aggregated traffic and session setup latency. We finally discuss the future directions for network convergence to enable future scenarios with enhanced configuration capabilities for fixed and mobile convergence.Comment: to appear in IEEE Networ

    Study on Energy Consumption and Coverage of Hierarchical Cooperation of Small Cell Base Stations in Heterogeneous Networks

    Full text link
    The demand for communication services in the era of intelligent terminals is unprecedented and huge. To meet such development, modern wireless communications must provide higher quality services with higher energy efficiency in terms of system capacity and quality of service (QoS), which could be achieved by the high-speed data rate, the wider coverage and the higher band utilization. In this paper, we propose a way to offload users from a macro base station(MBS) with a hierarchical distribution of small cell base stations(SBS). The connection probability is the key indicator of the implementation of the unload operation. Furthermore, we measure the service performance of the system by finding the conditional probability-coverage probability with the certain SNR threshold as the condition, that is, the probability of obtaining the minimum communication quality when the different base stations are connected to the user. Then, user-centered total energy consumption of the system is respectively obtained when the macro base station(MBS) and the small cell base stations(SBS) serve each of the users. The simulation results show that the hierarchical SBS cooperation in heterogeneous networks can provide a higher system total coverage probability for the system with a lower overall system energy consumption than MBS.Comment: 6 pages, 7 figures, accepted by ICACT201

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    On Content-centric Wireless Delivery Networks

    Full text link
    The flux of social media and the convenience of mobile connectivity has created a mobile data phenomenon that is expected to overwhelm the mobile cellular networks in the foreseeable future. Despite the advent of 4G/LTE, the growth rate of wireless data has far exceeded the capacity increase of the mobile networks. A fundamentally new design paradigm is required to tackle the ever-growing wireless data challenge. In this article, we investigate the problem of massive content delivery over wireless networks and present a systematic view on content-centric network design and its underlying challenges. Towards this end, we first review some of the recent advancements in Information Centric Networking (ICN) which provides the basis on how media contents can be labeled, distributed, and placed across the networks. We then formulate the content delivery task into a content rate maximization problem over a share wireless channel, which, contrasting the conventional wisdom that attempts to increase the bit-rate of a unicast system, maximizes the content delivery capability with a fixed amount of wireless resources. This conceptually simple change enables us to exploit the "content diversity" and the "network diversity" by leveraging the abundant computation sources (through application-layer encoding, pushing and caching, etc.) within the existing wireless networks. A network architecture that enables wireless network crowdsourcing for content delivery is then described, followed by an exemplary campus wireless network that encompasses the above concepts.Comment: 20 pages, 7 figures,accepted by IEEE Wireless Communications,Sept.201
    corecore