13,928 research outputs found

    Ecological IVIS design : using EID to develop a novel in-vehicle information system

    Get PDF
    New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ‘green’ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ‘Foot-LITE’ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field

    Novel Multimodal Feedback Techniques for In-Car Mid-Air Gesture Interaction

    Get PDF
    This paper presents an investigation into the effects of different feedback modalities on mid-air gesture interaction for infotainment systems in cars. Car crashes and near-crash events are most commonly caused by driver distraction. Mid-air interaction is a way of reducing driver distraction by reducing visual demand from infotainment. Despite a range of available modalities, feedback in mid-air gesture systems is generally provided through visual displays. We conducted a simulated driving study to investigate how different types of multimodal feedback can support in-air gestures. The effects of different feedback modalities on eye gaze behaviour, and the driving and gesturing tasks are considered. We found that feedback modality influenced gesturing behaviour. However, drivers corrected falsely executed gestures more often in non-visual conditions. Our findings show that non-visual feedback can reduce visual distraction significantl

    The role of avatars in e-government interfaces

    Get PDF
    This paper investigates the use of avatars to communicate live message in e-government interfaces. A comparative study is presented that evaluates the contribution of multimodal metaphors (including avatars) to the usability of interfaces for e-government and user trust. The communication metaphors evaluated included text, earcons, recorded speech and avatars. The experimental platform used for the experiment involved two interface versions with a sample of 30 users. The results demonstrated that the use of multimodal metaphors in an e-government interface can significantly contribute to enhancing the usability and increase trust of users to the e-government interface. A set of design guidelines, for the use of multimodal metaphors in e-government interfaces, was also produced

    Caring, sharing widgets: a toolkit of sensitive widgets

    Get PDF
    Although most of us communicate using multiple sensory modalities in our lives, and many of our computers are similarly capable of multi-modal interaction, most human-computer interaction is predominantly in the visual mode. This paper describes a toolkit of widgets that are capable of presenting themselves in multiple modalities, but further are capapble of adapting their presentation to suit the contexts and environments in which they are used. This is of increasing importance as the use of mobile devices becomes ubiquitous

    The design of sonically-enhanced widgets

    Get PDF
    This paper describes the design of user-interface widgets that include non-speech sound. Previous research has shown that the addition of sound can improve the usability of human–computer interfaces. However, there is little research to show where the best places are to add sound to improve usability. The approach described here is to integrate sound into widgets, the basic components of the human–computer interface. An overall structure for the integration of sound is presented. There are many problems with current graphical widgets and many of these are difficult to correct by using more graphics. This paper presents many of the standard graphical widgets and describes how sound can be added. It describes in detail usability problems with the widgets and then the non-speech sounds to overcome them. The non-speech sounds used are earcons. These sonically-enhanced widgets allow designers who are not sound experts to create interfaces that effectively improve usability and have coherent and consistent sounds
    • …
    corecore