77,711 research outputs found

    Semantic web technologies for video surveillance metadata

    Get PDF
    Video surveillance systems are growing in size and complexity. Such systems typically consist of integrated modules of different vendors to cope with the increasing demands on network and storage capacity, intelligent video analytics, picture quality, and enhanced visual interfaces. Within a surveillance system, relevant information (like technical details on the video sequences, or analysis results of the monitored environment) is described using metadata standards. However, different modules typically use different standards, resulting in metadata interoperability problems. In this paper, we introduce the application of Semantic Web Technologies to overcome such problems. We present a semantic, layered metadata model and integrate it within a video surveillance system. Besides dealing with the metadata interoperability problem, the advantages of using Semantic Web Technologies and the inherent rule support are shown. A practical use case scenario is presented to illustrate the benefits of our novel approach

    On-the-fly Historical Handwritten Text Annotation

    Full text link
    The performance of information retrieval algorithms depends upon the availability of ground truth labels annotated by experts. This is an important prerequisite, and difficulties arise when the annotated ground truth labels are incorrect or incomplete due to high levels of degradation. To address this problem, this paper presents a simple method to perform on-the-fly annotation of degraded historical handwritten text in ancient manuscripts. The proposed method aims at quick generation of ground truth and correction of inaccurate annotations such that the bounding box perfectly encapsulates the word, and contains no added noise from the background or surroundings. This method will potentially be of help to historians and researchers in generating and correcting word labels in a document dynamically. The effectiveness of the annotation method is empirically evaluated on an archival manuscript collection from well-known publicly available datasets

    IFC-based calculation of the Flemish Energy Performance Standard

    Get PDF
    This paper illustrates our findings concerning space based design methodologies and interoperability issues for today's Building Information Modeling (BIM) environments. A method is elaborated which enables building designers to perform an automated energy use analysis, based oil an Industry Foundation Classes (IFC) model derived from a commercial BIM environment, in this case Autodesk Revit 9.1. A prototype application was built, which evaluates the building model as well as vendor-neutral exchange mechanisms, in accordance with the Flemish Energy Performance Regulation (EPR) standard. Several issues regarding the need for space-based building models are identified and algorithms are developed to overcome possible shortcomings

    Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval

    Full text link
    Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences. For every video sequence, a document that represents motion information is generated. Documents of the unseen video are queried against the library at multiple scales to find videos with similar motion characteristics. This provides us with coarse localization of objects in the unseen video. We further adapt these retrieved object locations to the new video using an efficient warping scheme. The proposed method is validated on in-the-wild video surveillance datasets where we outperform state-of-the-art appearance-based trackers. We also introduce a new challenging dataset with complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for Video Technolog

    Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies

    Get PDF
    Aerodynamically economical flight is steady and level. The high-amplitude flapping and bounding flight style of many small birds departs considerably from any aerodynamic or purely mechanical optimum. Further, many large birds adopt a flap-glide flight style in cruising flight which is not consistent with purely aerodynamic economy. Here, an account is made for such strategies by noting a well-described, general, physiological cost parameter of muscle: the cost of activation. Small birds, with brief downstrokes, experience disproportionately high costs due to muscle activation for power during contraction as opposed to work. Bounding flight may be an adaptation to modulate mean aerodynamic force production in response to (1) physiological pressure to extend the duration of downstroke to reduce power demands during contraction; (2) the prevention of a low-speed downstroke due to the geometric constraints of producing thrust; (3) an aerodynamic cost to flapping with very low lift coefficients. In contrast, flap-gliding birds, which tend to be larger, adopt a strategy that reduces the physiological cost of work due both to activation and contraction efficiency. Flap-gliding allows, despite constraints to modulation of aerodynamic force lever-arm, (1) adoption of moderately large wing-stroke amplitudes to achieve suitable muscle strains, thereby reducing the activation costs for work; (2) reasonably quick downstrokes, enabling muscle contraction at efficient velocities, while being (3) prevented from very slow weight-supporting upstrokes due to the cost of performing ‘negative’ muscle work

    A hybrid technique for face detection in color images

    Get PDF
    In this paper, a hybrid technique for face detection in color images is presented. The proposed technique combines three analysis models, namely skin detection, automatic eye localization, and appearance-based face/nonface classification. Using a robust histogram-based skin detection model, skin-like pixels are first identified in the RGB color space. Based on this, face bounding-boxes are extracted from the image. On detecting a face bounding-box, approximate positions of the candidate mouth feature points are identified using the redness property of image pixels. A region-based eye localization step, based on the detected mouth feature points, is then applied to face bounding-boxes to locate possible eye feature points in the image. Based on the distance between the detected eye feature points, face/non-face classification is performed over a normalized search area using the Bayesian discriminating feature (BDF) analysis method. Some subjective evaluation results are presented on images taken using digital cameras and a Webcam, representing both indoor and outdoor scenes
    corecore