56 research outputs found

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    A Critical Review of Practices and Challenges in Intrusion Detection Systems for IoT: Towards Universal and Resilient Systems

    Get PDF
    The Internet-of-Things (IoT) is rapidly becoming ubiquitous. However the heterogeneous nature of devices and protocols in use, the sensitivity of the data contained within, as well as the legal and privacy issues, make security for the IoT a growing research priority and industry concern. With many security practices being unsuitable due to their resource intensive nature, it is deemed important to include second line defences into IoT networks. These systems will also need to be assessed for their efficacy in a variety of different network types and protocols. To shed light on these issues, this paper is concerned with advancements in intrusion detection practices in IoT. It provides a comprehensive review of current Intrusion Detection Systems (IDS) for IoT technologies, focusing on architecture types. A proposal for future directions in IoT based IDS are then presented and evaluated. We show how traditional practices are unsuitable due to their inherent features providing poor coverage of the IoT domain. In order to develop a secure, robust and optimised solution for these networks, the current research for intrusion detection in IoT will need to move in a different direction. An example of which is proposed in order to illustrate how malicious nodes might be passively detected

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Performance evaluation of HIP-based network security solutions

    Get PDF
    Abstract. Host Identity Protocol (HIP) is a networking technology that systematically separates the identifier and locator roles of IP addresses and introduces a Host Identity (HI) name space based on a public key security infrastructure. This modification offers a series of benefits such as mobility, multi-homing, end-to-end security, signaling, control/data plane separation, firewall security, e.t.c. Although HIP has not yet been sufficiently applied in mainstream communication networks, industry experts foresee its potential as an integral part of next generation networks. HIP can be used in various HIP-aware applications as well as in traditional IP-address-based applications and networking technologies, taking middle boxes into account. One of such applications is in Virtual Private LAN Service (VPLS), VPLS is a widely used method of providing Ethernet-based Virtual Private Network that supports the connection of geographically separated sites into a single bridged domain over an IP/MPLS network. The popularity of VPLS among commercial and defense organizations underscores the need for robust security features to protect both data and control information. After investigating the different approaches to HIP, a real world testbed is implemented. Two experiment scenarios were evaluated, one is performed on two open source Linux-based HIP implementations (HIPL and OpenHIP) and the other on two sets of enterprise equipment from two different companies (Tempered Networks and Byres Security). To account for a heterogeneous mix of network types, the Open source HIP implementations were evaluated on different network environments, namely Local Area Network (LAN), Wireless LAN (WLAN), and Wide Area Network (WAN). Each scenario is tested and evaluated for performance in terms of throughput, latency, and jitter. The measurement results confirmed the assumption that no single solution is optimal in all considered aspects and scenarios. For instance, in the open source implementations, the performance penalty of security on TCP throughput for WLAN scenario is less in HIPL than in OpenHIP, while for WAN scenario the reverse is the case. A similar outcome is observed for the UDP throughput. However, on latency, HIPL showed lower latency for all three network test scenarios. For the legacy equipment experiment, the penalty of security on TCP throughput is about 19% compared with the non-secure scenario while latency is increased by about 87%. This work therefore provides viable information for researchers and decision makers on the optimal solution to securing their VPNs based on the application scenarios and the potential performance penalties that come with each approach.HIP-pohjaisten tietoliikenneverkkojen turvallisuusratkaisujen suorituskyvyn arviointi. Tiivistelmä. Koneen identiteettiprotokolla (HIP, Host Identity Protocol) on tietoliikenneverkkoteknologia, joka käyttää erillistä kerrosta kuljetusprotokollan ja Internet-protokollan (IP) välissä TCP/IP-protokollapinossa. HIP erottaa systemaattisesti IP-osoitteen verkko- ja laite-osat, sekä käyttää koneen identiteetti (HI) -osaa perustuen julkisen avainnuksen turvallisuusrakenteeseen. Tämän hyötyjä ovat esimerkiksi mobiliteetti, moniliittyminen, päästä päähän (end-to-end) turvallisuus, kontrolli-informaation ja datan erottelu, kohtaaminen, osoitteenmuutos sekä palomuurin turvallisuus. Teollisuudessa HIP-protokolla nähdään osana seuraavan sukupolven tietoliikenneverkkoja, vaikka se ei vielä olekaan yleistynyt laajaan kaupalliseen käyttöön. HIP–protokollaa voidaan käyttää paitsi erilaisissa HIP-tietoisissa, myös perinteisissä IP-osoitteeseen perustuvissa sovelluksissa ja verkkoteknologioissa. Eräs tällainen sovellus on virtuaalinen LAN-erillisverkko (VPLS), joka on laajasti käytössä oleva menetelmä Ethernet-pohjaisen, erillisten yksikköjen ja yhden sillan välistä yhteyttä tukevan, virtuaalisen erillisverkon luomiseen IP/MPLS-verkon yli. VPLS:n yleisyys sekä kaupallisissa- että puolustusorganisaatioissa korostaa vastustuskykyisten turvallisuusominaisuuksien tarpeellisuutta tiedon ja kontrolliinformaation suojauksessa. Tässä työssä tutkitaan aluksi HIP-protokollan erilaisia lähestymistapoja. Teoreettisen tarkastelun jälkeen käytännön testejä suoritetaan itse rakennetulla testipenkillä. Tarkasteltavat skenaariot ovat verrata Linux-pohjaisia avoimen lähdekoodin HIP-implementaatioita (HIPL ja OpenHIP) sekä verrata kahden eri valmistajan laitteita (Tempered Networks ja Byres Security). HIP-implementaatiot arvioidaan eri verkkoympäristöissä, jota ovat LAN, WLAN sekä WAN. Kaikki testatut tapaukset arvioidaan tiedonsiirtonopeuden, sen vaihtelun (jitter) sekä latenssin perusteella. Mittaustulokset osoittavat, että sama ratkaisu ei ole optimaalinen kaikissa tarkastelluissa tapauksissa. Esimerkiksi WLAN-verkkoa käytettäessä turvallisuuden aiheuttama häviö tiedonsiirtonopeudessa on HIPL:n tapauksessa OpenHIP:iä pirnempi, kun taas WAN-verkon tapauksessa tilanne on toisinpäin. Samanlaista käyttäytymistä havaitaan myös UDP-tiedonsiirtonopeudessa. HIPL antaa kuitenkin pienimmän latenssin kaikissa testiskenaarioissa. Eri valmistajien laitteita vertailtaessa huomataan, että TCP-tiedonsiirtonopeus huononee 19 ja latenssi 87 prosenttia verrattuna tapaukseen, jossa turvallisuusratkaisua ei käytetä. Näin ollen tämän työn tuottama tärkeä tieto voi auttaa alan toimijoita optimaalisen verkkoturvallisuusratkaisun löytämisessä VPN-pohjaisiin sovelluksiin

    An outright open source approach for simple and pragmatic internet eXchange

    Get PDF
    L'Internet, le réseaux des réseaux, est indispensable à notre vie moderne et mondialisée et en tant que ressource publique il repose sur l'inter opérabilité et la confiance. Les logiciels libres et open source jouent un rôle majeur pour son développement. Les points d'échange Internet (IXP) où tous les opérateurs de type et de taille différents peuvent s'échanger du trafic sont essentiels en tant que lieux d'échange neutres et indépendants. Le service fondamental offert par un IXP est une fabrique de commutation de niveau 2 partagée. Aujourd'hui les IXP sont obligés d'utiliser des technologies propriétaires pour leur fabrique de commutations. Bien qu'une fabrique de commutations de niveau 2 se doit d'être une fonctionnalité de base, les solutions actuelles ne répondent pas correctement aux exigences des IXPs. Cette situation est principalement dûe au fait que les plans de contrôle et de données sont intriqués sans possibilités de programmer finement le plan de commutation. Avant toute mise en œuvre, il est primordial de tester chaque équipement afin de vérifier qu'il répond aux attentes mais les solutions de tests permettant de valider les équipements réseaux sont toutes non open source, commerciales et ne répondent pas aux besoins techniques d'indépendance et de neutralité. Le "Software Defined Networking" (SDN), nouveau paradigme découplant les plans de contrôle et de données utilise le protocole OpenFlow qui permet de programmer le plan de commutation Ethernet haute performance. Contrairement à tous les projets de recherches qui centralisent la totalité du plan de contrôle au dessus d'OpenFlow, altérant la stabilité des échanges, nous proposons d'utiliser OpenFlow pour gérer le plan de contrôle spécifique à la fabrique de commutation. L'objectif principal de cette thèse est de proposer "Umbrella", fabrique de commutation simple et pragmatique répondant à toutes les exigences des IXPs et en premier lieu à la garantie d'indépendance et de neutralité des échanges. Dans la première partie, nous présentons l'architecture "Umbrella" en détail avec l'ensemble des tests et validations démontrant la claire séparation du plan de contrôle et du plan de données pour augmenter la robustesse, la flexibilité et la fiabilité des IXPs. Pour une exigence d'autonomie des tests nécessaires pour les IXPs permettant l'examen de la mise en œuvre d'Umbrella et sa validation, nous avons développé l'"Open Source Network Tester" (OSNT), un système entièrement open source "hardware" de génération et de capture de trafic. OSNT est le socle pour l"OpenFLow Operations Per Second Turbo" (OFLOPS Turbo), la plate-forme d'évaluation de commutation OpenFlow. Le dernier chapitre présente le déploiement de l'architecture "Umbrella" en production sur un point d'échange régional. Les outils de test que nous avons développés ont été utilisés pour vérifier les équipements déployés en production. Ce point d'échange, stable depuis maintenant un an, est entièrement géré et contrôlé par une seule application Web remplaçant tous les systèmes complexes et propriétaires de gestion utilisés précédemment.In almost everything we do, we use the Internet. The Internet is indispensable for our today's lifestyle and to our globalized financial economy. The global Internet traffic is growing exponentially. IXPs are the heart of Internet. They are highly valuable for the Internet as neutral exchange places where all type and size of autonomous systems can "peer" together. The IXPs traffic explode. The 2013 global Internet traffic is equivalent with the largest european IXP today. The fundamental service offer by IXP is a shared layer2 switching fabric. Although it seems a basic functionality, today solutions never address their basic requirements properly. Today networks solutions are inflexible as proprietary closed implementation of a distributed control plane tight together with the data plane. Actual network functions are unmanageable and have no flexibility. We can understand how IXPs operators are desperate reading the EURO-IX "whishlist" of the requirements who need to be implemented in core Ethernet switching equipments. The network vendor solutions for IXPs based on MPLS are imperfect readjustment. SDN is an emerging paradigm decoupling the control and data planes, on opening high performance forwarding plane with OpenFlow. The aims of this thesis is to propose an IXP pragmatic Openflow switching fabric, addressing the critical requirements and bringing more flexibility. Transparency is better for neutrality. IXPs needs a straightforward more transparent layer2 fabric where IXP participants can exchange independently their traffic. Few SDN solutions have been presented already but all of them are proposing fuzzy layer2 and 3 separation. For a better stability not all control planes functions can be decoupled from the data plane. As other goal statement, networking testing tools are essential for qualifying networking equipment. Most of them are software based and enable to perform at high speed with accuracy. Moreover network hardware monitoring and testing being critical for computer networks, current solutions are both extremely expensive and inflexible. The experience in deploying Openflow in production networks has highlight so far significant limitations in the support of the protocol by hardware switches. We presents Umbrella, a new SDN-enabled IXP fabric architecture, that aims at strengthening the separation of control and data plane to increase both robustness, flexibility and reliability of the exchange. Umbrella abolish broadcasting with a pseudo wire and segment routing approach. We demonstrated for an IXP fabric not all the control plane can be decoupled from the date plane. We demonstrate Umbrella can scale and recycle legacy non OpenFlow core switch to reduce migration cost. Into the testing tools lacuna we launch the Open Source Network Tester (OSNT), a fully open-source traffic generator and capture system. Additionally, our approach has demonstrated lower-cost than comparable commercial systems while achieving comparable levels of precision and accuracy; all within an open-source framework extensible with new features to support new applications, while permitting validation and review of the implementation. And we presents the integration of OpenFLow Operations Per Second (OFLOPS), an OpenFlow switch evaluation platform, with the OSNT platform, a hardware-accelerated traffic generation and capturing platform. What is better justification than a real deployment ? We demonstrated the real flexibility and benefit of the Umbrella architecture persuading ten Internet Operators to migrate the entire Toulouse IXP. The hardware testing tools we have developed have been used to qualify the hardware who have been deployed in production. The TouIX is running stable from a year. It is fully managed and monitored through a single web application removing all the legacy complex management systems

    Network Selection Optimization in a Secured Mobile IP Data Overlay System

    Get PDF
    The purpose of this thesis to so solve a limitation in the switchover mechanism of a Mobile IP (MIP) client device where it fails to change the active Mobile IP leg in a scenario where the current used path is just marginally good. The MIP client is a Cisco 819 router that provides internet connectivity to end users via an internal radio interface to a public Mobile Network Operator (MNO) and an external modem connected via an Ethernet port. When Mobile IP fails to properly select the active leg, the end user’s experience detriments and is unable to continue normal operation, this is why a mechanism is needed to probe the available networks and to select the best one for the end user. This work studies different vertical handover mechanisms that could be used in this type of environments where not only, not all the participants of the handover selection are radio interfaces; as in this case one interface is an external device, but also where most of the physical information of an interface is not available to use as part of a handover algorithm. This thesis proposes three different mechanisms to choose the best available network at any given time to complement the Mobile IP operation. The first mechanism is based on Round-Trip-Time (RTT), the next mechanism uses immediate throughput as the metric for the network selection and the final proposal is a muti-attribute algorithm where very poor networks will be filtered by their larger RTT values first and only then will the immediate available throughput will be measured. The results show that the three mechanisms provided a decrease in the downtime experienced by the end user where the RTT-based algorithm had the lowest increase in performance and the immediate-throughput-based proposal had the highest increase. The multi-attribute mechanism; while not top performing in terms of less downtime, significantly reduced the amount of time it took to select the new network and thus provides better end user experience

    On the Exploration of FPGAs and High-Level Synthesis Capabilities on Multi-Gigabit-per-Second Networks

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 24-01-2020Traffic on computer networks has faced an exponential grown in recent years. Both links and communication equipment had to adapt in order to provide a minimum quality of service required for current needs. However, in recent years, a few factors have prevented commercial off-the-shelf hardware from being able to keep pace with this growth rate, consequently, some software tools are struggling to fulfill their tasks, especially at speeds higher than 10 Gbit/s. For this reason, Field Programmable Gate Arrays (FPGAs) have arisen as an alternative to address the most demanding tasks without the need to design an application specific integrated circuit, this is in part to their flexibility and programmability in the field. Needless to say, developing for FPGAs is well-known to be complex. Therefore, in this thesis we tackle the use of FPGAs and High-Level Synthesis (HLS) languages in the context of computer networks. We focus on the use of FPGA both in computer network monitoring application and reliable data transmission at very high-speed. On the other hand, we intend to shed light on the use of high level synthesis languages and boost FPGA applicability in the context of computer networks so as to reduce development time and design complexity. In the first part of the thesis, devoted to computer network monitoring. We take advantage of the FPGA determinism in order to implement active monitoring probes, which consist on sending a train of packets which is later used to obtain network parameters. In this case, the determinism is key to reduce the uncertainty of the measurements. The results of our experiments show that the FPGA implementations are much more accurate and more precise than the software counterpart. At the same time, the FPGA implementation is scalable in terms of network speed — 1, 10 and 100 Gbit/s. In the context of passive monitoring, we leverage the FPGA architecture to implement algorithms able to thin cyphered traffic as well as removing duplicate packets. These two algorithms straightforward in principle, but very useful to help traditional network analysis tools to cope with their task at higher network speeds. On one hand, processing cyphered traffic bring little benefits, on the other hand, processing duplicate traffic impacts negatively in the performance of the software tools. In the second part of the thesis, devoted to the TCP/IP stack. We explore the current limitations of reliable data transmission using standard software at very high-speed. Nowadays, the network is becoming an important bottleneck to fulfill current needs, in particular in data centers. What is more, in recent years the deployment of 100 Gbit/s network links has started. Consequently, there has been an increase scrutiny of how networking functionality is deployed, furthermore, a wide range of approaches are currently being explored to increase the efficiency of networks and tailor its functionality to the actual needs of the application at hand. FPGAs arise as the perfect alternative to deal with this problem. For this reason, in this thesis we develop Limago an FPGA-based open-source implementation of a TCP/IP stack operating at 100 Gbit/s for Xilinx’s FPGAs. Limago not only provides an unprecedented throughput, but also, provides a tiny latency when compared to the software implementations, at least fifteen times. Limago is a key contribution in some of the hottest topic at the moment, for instance, network-attached FPGA and in-network data processing

    A Celebration of West Point Authors

    Get PDF
    Today we celebrate the more than 200 works of scholarship produced at the Academy between July and December 2017. The theme of this event is the intersection of civilian and military technology, policy, and innovation.https://digitalcommons.usmalibrary.org/books/1013/thumbnail.jp

    Construction, Operation and Maintenance of Network System(Junior Level)

    Get PDF
    This open access book follows the development rules of network technical talents, simultaneously placing its focus on the transfer of network knowledge, the accumulation of network skills, and the improvement of professionalism. Through the complete process from the elaboration of the theories of network technology to the analysis of application scenarios then to the design and implementation of case projects, readers are enabled to accumulate project experience and eventually acquire knowledge and cultivate their ability so as to lay a solid foundation for adapting to their future positions. This book comprises six chapters, which include “General Operation Safety of Network System,” “Cabling Project,” “Hardware Installation of Network System,” “Basic Knowledge of Network System,” “Basic Operation of Network System,” and “Basic Operation and Maintenance of Network System.” This book can be used for teaching and training for the vocational skills certification of network system construction, operation, and maintenance in the pilot work of Huawei’s “1+X” Certification System, and it is also suitable as a textbook for application-oriented universities, vocational colleges, and technical colleges. In the meantime, it can also serve as a reference book for technicians engaged in network technology development, network management and maintenance, and network system integration. As the world’s leading ICT (information and communications technology) infrastructure and intelligent terminal provider, Huawei Technologies Co., Ltd. has covered many fields such as data communication, security, wireless, storage, cloud computing, intelligent computing, and artificial intelligence. Taking Huawei network equipment (routers, switches, wireless controllers, and wireless access points) as the platform, and based on network engineering projects, this book organizes all the contents according to the actual needs of the industry
    corecore