45,602 research outputs found

    Guided Machine Learning for power grid segmentation

    Full text link
    The segmentation of large scale power grids into zones is crucial for control room operators when managing the grid complexity near real time. In this paper we propose a new method in two steps which is able to automatically do this segmentation, while taking into account the real time context, in order to help them handle shifting dynamics. Our method relies on a "guided" machine learning approach. As a first step, we define and compute a task specific "Influence Graph" in a guided manner. We indeed simulate on a grid state chosen interventions, representative of our task of interest (managing active power flows in our case). For visualization and interpretation, we then build a higher representation of the grid relevant to this task by applying the graph community detection algorithm \textit{Infomap} on this Influence Graph. To illustrate our method and demonstrate its practical interest, we apply it on commonly used systems, the IEEE-14 and IEEE-118. We show promising and original interpretable results, especially on the previously well studied RTS-96 system for grid segmentation. We eventually share initial investigation and results on a large-scale system, the French power grid, whose segmentation had a surprising resemblance with RTE's historical partitioning

    A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

    Get PDF
    This paper aims to present a three phase scheduling algorithm that offers lesser energy consumption for weakly hard real time systems modeled with (1D55E;1D55E;1D55E;1D55E;, 1D55C;1D55C;1D55C;1D55C;) constraint. The weakly hard real time system consists of a DVS processor (frequency dependent) and peripheral devices (frequency independent) components. The energy minimization is done in three phase taking into account the preemption overhead. The first phase partitions the jobs into mandatory and optional while assigning processor speed ensuring the feasibility of the task set. The second phase proposes a greedy based preemption control technique which reduces the energy consumption due to preemption. While the third phase refines the feasible schedule received from the second phase by two methods, namely speed adjustment and delayed start. The proposed speed adjustment assigns optimal speed to each job whereas fragmented idle slots are accumulated to provide better opportunity to switch the component into sleep state by delayed start strategy as a result leads to energy saving. The simulation results and examples illustrate that our approach can effectively reduce the overall system energy consumption (especially for systems with higher utilizations) while guaranteeing the (1D55E;1D55E;1D55E;1D55E;, 1D55C;1D55C;1D55C;1D55C;) at the same time

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text
    • …
    corecore