3,109 research outputs found

    Towards electric bus system: planning, operating and evaluating

    Get PDF
    The green transformation of public transportation is an indispensable way to achieve carbon neutrality. Governments and authorities are vigorously implementing electric bus procurement and charging infrastructure deployment programs. At this primary but urgent stage, how to reasonably plan the procurement of electric buses, how to arrange the operation of the heterogeneous fleet, and how to locate and scale the infrastructure are urgent issues to be solved. For a smooth transition to full electrification, this thesis aims to propose systematic guidance for the fleet and charging facilities, to ensure life-cycle efficiency and energy conservation from the planning to the operational phase.One of the most important issues in the operational phase is the charge scheduling for electric buses, a new issue that is not present in the conventional transit system. How to take into account the charging location and time duration in bus scheduling and not cause additional load peaks to the grid is the first issue being addressed. A charging schedule optimization model is constructed for opportunity charging with battery wear and charging costs as optimization objectives. Besides, the uncertainty in energy consumption poses new challenges to daily operations. This thesis further specifies the daily charging schedules with the consideration of energy consumption uncertainty while safeguarding the punctuality of bus services.In the context of e-mobility systems, battery sizing, charging station deployment, and bus scheduling emerge as crucial factors. Traditionally these elements have been approached and organized separately with battery sizing and charging facility deployment termed planning phase problems and bus scheduling belonging to operational phase issues. However, the integrated optimization of the three problems has advantages in terms of life-cycle costs and emissions. Therefore, a consolidated optimization model is proposed to collaboratively optimize the three problems and a life-cycle costs analysis framework is developed to examine the performance of the system from both economic and environmental aspects. To improve the attractiveness and utilization of electric public transportation resources, two new solutions have been proposed in terms of charging strategy (vehicle-to-vehicle charging) and operational efficiency (mixed-flow transport). Vehicle-to-vehicle charging allows energy to be continuously transmitted along the road, reducing reliance on the accessibility and deployment of charging facilities. Mixed flow transport mode balances the directional travel demands and facilities the parcel delivery while ensuring the punctuality and safety of passenger transport

    Designing Dynamic Inductive Charging Infrastructures for Airport Aprons with Multiple Vehicle Types

    Get PDF
    In the effort to combat climate change, the CO2 emissions of the aviation sector must be reduced. The traffic caused by numerous types of ground vehicles on airport aprons currently contributes to those emissions as the vehicles typically operate with combustion engines, which is why an electrification of those vehicles has already begun. While stationary conductive charging of the vehicles is the current standard technology, dynamic wireless charging might be an attractive technological alternative, in particular for airport aprons; however, designing a charging network for an airport apron is a challenging task with important technical and economic aspects. In this paper, we propose a model to characterize the problem, especially for cases of multiple types of vehicles sharing the same charging network, such as passenger buses and baggage vehicles. In a numerical study inspired by real-world airports, we design such charging networks subject to service level constraints and evaluate the resulting structures via a discrete-event simulation, and thus, show the way to assess the margin of safety with respect to the vehicle batteries’ state of charge that is induced by the spatial structure of the charging network

    Designing Dynamic Inductive Charging Infrastructures for Airport Aprons with Multiple Vehicle Types

    Get PDF
    In the effort to combat climate change, the CO2 emissions of the aviation sector must be reduced. The traffic caused by numerous types of ground vehicles on airport aprons currently contributes to those emissions as the vehicles typically operate with combustion engines, which is why an electrification of those vehicles has already begun. While stationary conductive charging of the vehicles is the current standard technology, dynamic wireless charging might be an attractive technological alternative, in particular for airport aprons; however, designing a charging network for an airport apron is a challenging task with important technical and economic aspects. In this paper, we propose a model to characterize the problem, especially for cases of multiple types of vehicles sharing the same charging network, such as passenger buses and baggage vehicles. In a numerical study inspired by real-world airports, we design such charging networks subject to service level constraints and evaluate the resulting structures via a discrete-event simulation, and thus, show the way to assess the margin of safety with respect to the vehicle batteries’ state of charge that is induced by the spatial structure of the charging network. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Numerical Study on Planning Inductive Charging Infrastructures for Electric Service Vehicles on Airport Aprons

    Get PDF
    Dynamic inductive charging is a contact-free technology to provide electric vehicles with energy while they are in motion, thus eliminating the need to conductively charge the batteries of those vehicles and, hence, the required vehicle downtimes. Airport aprons of commercial airports are potential systems to employ this charging technology to reduce aviation-induced CO2 emissions. To date, many vehicles operating on airport aprons are equipped with internal combustion engines burning diesel fuel, hence contributing to CO2 emissions and the global warming problem. However, airport aprons exhibit specific features that might make dynamic inductive charging technologies particularly interesting. It turns out that using this technology leads to some strategic infrastructure design questions for airport aprons about the spatial allocation of the required system components. In this paper, we experimentally analyze these design questions to explore under which conditions we can expect the resulting mathematical optimization problems to be relatively hard or easy to be solved, respectively, as well as the achievable solution quality. To this end, we report numerical results on a large-scale numerical study reflecting different types of spatial structures of terminals and airport aprons as they can be found at real-world airports
    • …
    corecore