1,750,535 research outputs found

    Event-B Patterns for Specifying Fault-Tolerance in Multi-Agent Interaction

    No full text
    Interaction in a multi-agent system is susceptible to failure. A rigorous development of a multi-agent system must include the treatment of fault-tolerance of agent interactions for the agents to be able to continue to function independently. Patterns can be used to capture fault-tolerance techniques. A set of modelling patterns is presented that specify fault-tolerance in Event-B specifications of multi-agent interactions. The purpose of these patterns is to capture common modelling structures for distributed agent interaction in a form that is re-usable on other related developments. The patterns have been applied to a case study of the contract net interaction protocol

    An Empirical Evaluation On Vibrotactile Feedback For Wristband System

    Full text link
    With the rapid development of mobile computing, wearable wrist-worn is becoming more and more popular. But the current vibrotactile feedback patterns of most wrist-worn devices are too simple to enable effective interaction in nonvisual scenarios. In this paper, we propose the wristband system with four vibrating motors placed in different positions in the wristband, providing multiple vibration patterns to transmit multi-semantic information for users in eyes-free scenarios. However, we just applied five vibrotactile patterns in experiments (positional up and down, horizontal diagonal, clockwise circular, and total vibration) after contrastive analyzing nine patterns in a pilot experiment. The two experiments with the same 12 participants perform the same experimental process in lab and outdoors. According to the experimental results, users can effectively distinguish the five patterns both in lab and outside, with approximately 90% accuracy (except clockwise circular vibration of outside experiment), proving these five vibration patterns can be used to output multi-semantic information. The system can be applied to eyes-free interaction scenarios for wrist-worn devices.Comment: 10 pages

    Interacting Components

    Get PDF
    SystemCSP is a graphical modeling language based on both CSP and concepts of component-based software development. The component framework of SystemCSP enables specification of both interaction scenarios and relative execution ordering among components. Specification and implementation of interaction among participating components is formalized via the notion of interaction contract. The used approach enables incremental design of execution diagrams by adding restrictions in different interaction diagrams throughout the process of system design. In this way all different diagrams are related into a single formally verifiable system. The concept of reusable formally verifiable interaction contracts is illustrated by designing set of design patterns for typical fault tolerance interaction scenarios

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    Workflow resource pattern modelling and visualization

    Get PDF
    Workflow patterns have been recognized as the theoretical basis to modeling recurring problems in workflow systems. A form of workflow patterns, known as the resource patterns, characterise the behaviour of resources in workflow systems. Despite the fact that many resource patterns have been discovered, people still preclude them from many workflow system implementations. One of reasons could be obscurityin the behaviour of and interaction between resources and a workflow management system. Thus, we provide a modelling and visualization approach for the resource patterns, enabling a resource behaviour modeller to intuitively see the specific resource patterns involved in the lifecycle of a workitem. We believe this research can be extended to benefit not only workflow modelling, but also other applications, such as model validation, human resource behaviour modelling, and workflow model visualization
    • …
    corecore