942 research outputs found

    A probabilistic algorithm to test local algebraic observability in polynomial time

    Get PDF
    The following questions are often encountered in system and control theory. Given an algebraic model of a physical process, which variables can be, in theory, deduced from the input-output behavior of an experiment? How many of the remaining variables should we assume to be known in order to determine all the others? These questions are parts of the \emph{local algebraic observability} problem which is concerned with the existence of a non trivial Lie subalgebra of the symmetries of the model letting the inputs and the outputs invariant. We present a \emph{probabilistic seminumerical} algorithm that proposes a solution to this problem in \emph{polynomial time}. A bound for the necessary number of arithmetic operations on the rational field is presented. This bound is polynomial in the \emph{complexity of evaluation} of the model and in the number of variables. Furthermore, we show that the \emph{size} of the integers involved in the computations is polynomial in the number of variables and in the degree of the differential system. Last, we estimate the probability of success of our algorithm and we present some benchmarks from our Maple implementation.Comment: 26 pages. A Maple implementation is availabl

    Identifiability of generalised Randles circuit models

    Full text link
    The Randles circuit (including a parallel resistor and capacitor in series with another resistor) and its generalised topology have widely been employed in electrochemical energy storage systems such as batteries, fuel cells and supercapacitors, also in biomedical engineering, for example, to model the electrode-tissue interface in electroencephalography and baroreceptor dynamics. This paper studies identifiability of generalised Randles circuit models, that is, whether the model parameters can be estimated uniquely from the input-output data. It is shown that generalised Randles circuit models are structurally locally identifiable. The condition that makes the model structure globally identifiable is then discussed. Finally, the estimation accuracy is evaluated through extensive simulations
    corecore