3,063 research outputs found

    Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance

    Get PDF
    Small-animal imaging has become an important technique for the development of new radiotracers, drugs and therapies. Many laboratories have now a combination of different small-animal imaging systems, which are being used by biologists, pharmacists, medical doctors and physicists. The aim of this paper is to give an overview of the important factors in the design of a small animal, nuclear medicine and imaging experiment. Different experts summarize one specific aspect important for a good design of a small-animal experiment

    Distribution and dynamics of Tc-99m-pertechnetate uptake in the thyroid and other organs assessed by single-photon emission computed tomography in living mice

    Get PDF
    Background: Tc-99m pertechnetate is a well-known anion, used for clinical imaging of thyroid function. This gamma emitter is transported by the sodium iodide symporter but is not incorporated into thyroglobulin. Scintigraphy using Tc-99m pertechnetate or 123 iodide represents a powerful tool for the study of sodium iodide symporter activity in different organs of living animal models. However, in many studies that have been performed in mice, the thyroid could not be distinguished from the salivary glands. In this work, we have evaluated the use of a clinically dedicated single-photon emission computed tomography (SPECT) camera for thyroid imaging and assessed what improvements are necessary for the development of this technique. Methods: SPECT of the mouse neck region, with pinhole collimation and geometric calibration, was used for the individual measurement of Tc-99m pertechnetate uptake in the thyroid and the salivary glands. Uptake in the stomach was studied by planar whole-body imaging. Uptake kinetics and biodistribution studies were performed by sequential imaging. Results: This work has shown that thyroid imaging in living mice can be performed with a SPECT camera originally built for clinical use. Our experiments indicate that Tc-99m pertechnetate uptake is faster in the thyroid than in the salivary glands and the stomach. The decrease in Tc-99m pertechnetate uptake after injection of iodide or perchlorate as competitive inhibitors was also studied. The resulting rate decreases were faster in the thyroid than in the salivary glands or the stomach. Conclusions: We have shown that a clinically dedicated SPECT camera can be used for thyroid imaging. In our experiments, SPECT imaging allowed the analysis of Tc-99m pertechnetate accumulation in individual organs and revealed differences in uptake kinetics

    Quantification of Bronchial Circulation Perfusion in Rats

    Get PDF
    The bronchial circulation is thought to be the primary blood supply for pulmonary carcinomas. Thus, we have developed a method for imaging and quantifying changes in perfusion in the rat lung due to development of the bronchial circulation. A dual-modality micro-CT/SPECT system was used to detect change in perfusion in two groups of rats: controls and those with a surgically occluded left pulmonary artery. Both groups were imaged following injections on separate days i) 2mCi of Tc99m labeled macroaggregated albumin (MAA) into the left carotid artery (IA) and ii) a similar injection into the femoral vein (IV). The IA injection resulted in Tc99m accumulation in capillaries of the systemic circulation including the bronchial circulation, whereas the IV resulted in Tc99m accumulation in the pulmonary capillaries. Ordered subset expectation maximization (OSEM) was used to reconstruct the SPECT image volumes and a Feldkamp algorithm was used to reconstruct the micro-CT image volumes. The micro-CT and SPECT volumes were registered, the SPECT image volume was segmented using the right and left lung boundaries defined from the micro-CT volume, and the ratio of IA radioactivity accumulation in the left lung to IV radioactivity accumulation in both lungs was used as a measure of left lung flow via the bronchial circulation. This ratio was ~0.02 for the untreated rats compared to the treated animals that had an increased flow ratio of ~0.21 40 days after left pulmonary artery occlusion. This increase in flow to the occluded left lung via the bronchial circulation suggests this will be a useful model for further investigating antiangiogenic treatments

    Quantification of Bronchial Circulation Perfusion in Rats

    Get PDF
    The bronchial circulation is thought to be the primary blood supply for pulmonary carcinomas. Thus, we have developed a method for imaging and quantifying changes in perfusion in the rat lung due to development of the bronchial circulation. A dual-modality micro-CT/SPECT system was used to detect change in perfusion in two groups of rats: controls and those with a surgically occluded left pulmonary artery. Both groups were imaged following injections on separate days i) 2mCi of Tc99m labeled macroaggregated albumin (MAA) into the left carotid artery (IA) and ii) a similar injection into the femoral vein (IV). The IA injection resulted in Tc99m accumulation in capillaries of the systemic circulation including the bronchial circulation, whereas the IV resulted in Tc99m accumulation in the pulmonary capillaries. Ordered subset expectation maximization (OSEM) was used to reconstruct the SPECT image volumes and a Feldkamp algorithm was used to reconstruct the micro-CT image volumes. The micro-CT and SPECT volumes were registered, the SPECT image volume was segmented using the right and left lung boundaries defined from the micro-CT volume, and the ratio of IA radioactivity accumulation in the left lung to IV radioactivity accumulation in both lungs was used as a measure of left lung flow via the bronchial circulation. This ratio was ~0.02 for the untreated rats compared to the treated animals that had an increased flow ratio of ~0.21 40 days after left pulmonary artery occlusion. This increase in flow to the occluded left lung via the bronchial circulation suggests this will be a useful model for further investigating antiangiogenic treatments

    Absolute quantitative total-body small-animal SPECT with focusing pinholes

    Get PDF
    Purpose: In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity and scatter for multi-pinhole SPECT. The aim of this paper is (1) to investigate the accuracy of the Chang algorithm in rodents and (2) to present a practical Changbased method using body outline contours obtained with optical cameras. Methods: Here we develop and experimentally validate a practical method for attenuation correction based on a Chang first-order method. This approach has the advantage that it is employed after, and therefore independently from, iterative reconstruction. Therefore, no new system matrix has to be calculated for each specific animal. Experiments with phantoms and animals were performed with a highresolution focusing multi-pinhole SPECT system (USPECT-II, MILabs, The Netherlands). This SPECT system provides three additional optical camera images of the animal for each SPECT scan from which the animal contour can be estimated. Results: Phantom experiments demonstrated that an average quantification error of –18.7% was reduced to –1.7% when both window-based scatter correction and Chang correction based on the body outline from optical images were applied. Without scatter and attenuation correction, quantification errors in a sacrificed rat containing sources with known activity ranged from –23.6 to –9.3%. These errors were reduced to values between –6.3 and +4.3% (with an average magnitude of 2.1%) after applying scatter and Chang attenuation correction. Conclusion: We conclude that the modified Chang correction based on body contour combined with window-based scatter correction is a practical method for obtaining small-animal SPECT images with high quantitative accuracy.Radiation, Radionuclides and ReactorsApplied Science

    Implementation of absolute quantification in small-animal SPECT imaging: Phantom and animal studies

    Get PDF
    Purpose: Presence of photon attenuation severely challenges quantitative accuracy in single-photon emission computed tomography (SPECT) imaging. Subsequently, various attenuation correction methods have been developed to compensate for this degradation. The present study aims to implement an attenuation correction method and then to evaluate quantification accuracy of attenuation correction in small-animal SPECT imaging. Methods: Images were reconstructed using an iterative reconstruction method based on the maximum-likelihood expectation maximization (MLEM) algorithm including resolution recovery. This was implemented in our designed dedicated small-animal SPECT (HiReSPECT) system. For accurate quantification, the voxel values were converted to activity concentration via a calculated calibration factor. An attenuation correction algorithm was developed based on the first-order Chang’s method. Both phantom study and experimental measurements with four rats were used in order to validate the proposed method. Results: The phantom experiments showed that the error of �15.5% in the estimation of activity concentration in a uniform region was reduced to +5.1% when attenuation correction was applied. For in vivo studies, the average quantitative error of �22.8 � 6.3% (ranging from �31.2% to �14.8%) in the uncorrected images was reduced to +3.5 � 6.7% (ranging from �6.7 to +9.8%) after applying attenuation correction. Conclusion: The results indicate that the proposed attenuation correction algorithm based on the first-order Chang’s method, as implemented in our dedicated small-animal SPECT system, significantly improves accuracy of the quantitative analysis as well as the absolute quantification

    Development of a Practical Calibration Procedure for a Clinical SPECT/MRI System Using a Single INSERT Prototype Detector and Multi-Mini Slit-Slat Collimator

    Get PDF
    In the context of the INSERT project, we have been developing a clinical SPECT insert for an MRI system, in order to perform simultaneous SPECT/MRI of the human brain. This system will consist of 20 CsI:Tl scintillation detectors, 5 cm wide and 10 cm long, with a 72-channel SiPM readout per detector, and a multi-mini slit-slat (MSS) collimator set up in a stationary partial ring. Additionally the system has a custom-built transmit/receive MR coil to ensure compatibility with the SPECT system. Due to the novel design of the system/collimator, existing geometric calibration methods are not suitable. Therefore we propose a novel and practical calibration procedure that consists of a set of specific independent measurements to determine the geometric parameters of the collimator. This procedure was developed utilising a prototype system that consists of a reduced-size single detector with a 36-channel SiPM-based readout and a single MSS collimator module. Validation was performed by reconstructing different imaging phantoms, using a rotating stage to simulate a tomographic acquisition. Regarding uniformity, the COV for the cylinder phantom reconstructed with correct calibration parameters is 6.7%, whereas the COV using incorrect parameters is 9.4%. The quality of the phantom reconstructions provide evidence of the applicability of the proposed method to the calibration of the prototype system. This procedure can be easily adapted for the final INSERT system

    Simulated design strategies for SPECT collimators to reduce the eddy currents induced by MRI gradient fields

    Get PDF
    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils
    • …
    corecore