140,818 research outputs found

    Automated Crowdturfing Attacks and Defenses in Online Review Systems

    Full text link
    Malicious crowdsourcing forums are gaining traction as sources of spreading misinformation online, but are limited by the costs of hiring and managing human workers. In this paper, we identify a new class of attacks that leverage deep learning language models (Recurrent Neural Networks or RNNs) to automate the generation of fake online reviews for products and services. Not only are these attacks cheap and therefore more scalable, but they can control rate of content output to eliminate the signature burstiness that makes crowdsourced campaigns easy to detect. Using Yelp reviews as an example platform, we show how a two phased review generation and customization attack can produce reviews that are indistinguishable by state-of-the-art statistical detectors. We conduct a survey-based user study to show these reviews not only evade human detection, but also score high on "usefulness" metrics by users. Finally, we develop novel automated defenses against these attacks, by leveraging the lossy transformation introduced by the RNN training and generation cycle. We consider countermeasures against our mechanisms, show that they produce unattractive cost-benefit tradeoffs for attackers, and that they can be further curtailed by simple constraints imposed by online service providers

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    EveTAR: Building a Large-Scale Multi-Task Test Collection over Arabic Tweets

    Full text link
    This article introduces a new language-independent approach for creating a large-scale high-quality test collection of tweets that supports multiple information retrieval (IR) tasks without running a shared-task campaign. The adopted approach (demonstrated over Arabic tweets) designs the collection around significant (i.e., popular) events, which enables the development of topics that represent frequent information needs of Twitter users for which rich content exists. That inherently facilitates the support of multiple tasks that generally revolve around events, namely event detection, ad-hoc search, timeline generation, and real-time summarization. The key highlights of the approach include diversifying the judgment pool via interactive search and multiple manually-crafted queries per topic, collecting high-quality annotations via crowd-workers for relevancy and in-house annotators for novelty, filtering out low-agreement topics and inaccessible tweets, and providing multiple subsets of the collection for better availability. Applying our methodology on Arabic tweets resulted in EveTAR , the first freely-available tweet test collection for multiple IR tasks. EveTAR includes a crawl of 355M Arabic tweets and covers 50 significant events for which about 62K tweets were judged with substantial average inter-annotator agreement (Kappa value of 0.71). We demonstrate the usability of EveTAR by evaluating existing algorithms in the respective tasks. Results indicate that the new collection can support reliable ranking of IR systems that is comparable to similar TREC collections, while providing strong baseline results for future studies over Arabic tweets

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Interpretation of Natural Language Rules in Conversational Machine Reading

    Get PDF
    Most work in machine reading focuses on question answering problems where the answer is directly expressed in the text to read. However, many real-world question answering problems require the reading of text not because it contains the literal answer, but because it contains a recipe to derive an answer together with the reader's background knowledge. One example is the task of interpreting regulations to answer "Can I...?" or "Do I have to...?" questions such as "I am working in Canada. Do I have to carry on paying UK National Insurance?" after reading a UK government website about this topic. This task requires both the interpretation of rules and the application of background knowledge. It is further complicated due to the fact that, in practice, most questions are underspecified, and a human assistant will regularly have to ask clarification questions such as "How long have you been working abroad?" when the answer cannot be directly derived from the question and text. In this paper, we formalise this task and develop a crowd-sourcing strategy to collect 32k task instances based on real-world rules and crowd-generated questions and scenarios. We analyse the challenges of this task and assess its difficulty by evaluating the performance of rule-based and machine-learning baselines. We observe promising results when no background knowledge is necessary, and substantial room for improvement whenever background knowledge is needed.Comment: EMNLP 201

    A Comparison of Nuggets and Clusters for Evaluating Timeline Summaries

    Get PDF
    There is growing interest in systems that generate timeline summaries by filtering high-volume streams of documents to retain only those that are relevant to a particular event or topic. Continued advances in algorithms and techniques for this task depend on standardized and reproducible evaluation methodologies for comparing systems. However, timeline summary evaluation is still in its infancy, with competing methodologies currently being explored in international evaluation forums such as TREC. One area of active exploration is how to explicitly represent the units of information that should appear in a 'good' summary. Currently, there are two main approaches, one based on identifying nuggets in an external 'ground truth', and the other based on clustering system outputs. In this paper, by building test collections that have both nugget and cluster annotations, we are able to compare these two approaches. Specifically, we address questions related to evaluation effort, differences in the final evaluation products, and correlations between scores and rankings generated by both approaches. We summarize advantages and disadvantages of nuggets and clusters to offer recommendations for future system evaluation
    corecore