48 research outputs found

    High Speed Test Interface Module Using MEMS Technology

    Get PDF
    With the transient frequency of available CMOS technologies exceeding hundreds of gigahertz and the increasing complexity of Integrated Circuit (IC) designs, it is now apparent that the architecture of current testers needs to be greatly improved to keep up with the formidable challenges ahead. Test requirements for modern integrated circuits are becoming more stringent, complex and costly. These requirements include an increasing number of test channels, higher test-speeds and enhanced measurement accuracy and resolution. In a conventional test configuration, the signal path from Automatic Test Equipment (ATE) to the Device-Under-Test (DUT) includes long traces of wires. At frequencies above a few gigahertz, testing integrated circuits becomes a challenging task. The effects on transmission lines become critical requiring impedance matching to minimize signal reflection. AC resistance due to the skin effect and electromagnetic coupling caused by radiation can also become important factors affecting the test results. In the design of a Device Interface Board (DIB), the greater the physical separation of the DUT and the ATE pin electronics, the greater the distortion and signal degradation. In this work, a new Test Interface Module (TIM) based on MEMS technology is proposed to reduce the distance between the tester and device-under-test by orders of magnitude. The proposed solution increases the bandwidth of test channels and reduces the undesired effects of transmission lines on the test results. The MEMS test interface includes a fixed socket and a removable socket. The removable socket incorporates MEMS contact springs to provide temporary with the DUT pads and the fixed socket contains a bed of micro-pins to establish electrical connections with the ATE pin electronics. The MEMS based contact springs have been modified to implement a high-density wafer level test probes for Through Silicon Vias (TSVs) in three dimensional integrated circuits (3D-IC). Prototypes have been fabricated using Silicon On Insulator SOI wafer. Experimental results indicate that the proposed architectures can operate up to 50 GHz without much loss or distortion. The MEMS probes can also maintain a good elastic performance without any damage or deformation in the test phase

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    NASA Tech Briefs, May 1989

    Get PDF
    This issue contains a special feature on the flight station of the future, discussing future enhancements to Aircraft cockpits. Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences

    Gallium arsenide bit-serial integrated circuits

    Get PDF

    A Resonant Based Test Methodology for Capacitive MEMs

    Get PDF
    This work presents a test method for capacitive Micro-Electro-Mechanical Systems (MEMS). A major class of MEMS sensors operate based on the principle of capacitance variation.The proposed test method in this work utilizes a resonant circuit to detect structural defects of capacitive MEMS sensors. It is shown that a small variation of MEMS capacitance due to a defect alters the resonance frequency considerably. It is also shown that the variation of the output amplitude can be observed for fault detection if an inductor with a high quality factor is employed in the test circuit. Mathematical approach is taken and verified to prove the validity of this work. The effects of structural defects such as short, broken and missing fingers of the MEMS comb-drive on the equivalent circuit models have been determined through frequency domain simulations.Simulation results and experimental measurements using an implemented MEMS comb drive indicate that the proposed method can detect common faults such as missing, broken and short fingers

    High efficiency and high frequency resonant tunneling diode sources

    Get PDF
    Terahertz (THz) technology has been generating a lot of interest due to the numerous potential applications for systems working in this previously unexplored frequency range. THz radiation has unique properties suited for high capacity communication systems and non-invasive, non-ionizing properties that when coupled with a fairly good spatial resolution are unparalleled in its sensing capabilities for use in biomedical, industrial and security fields. However, in order to achieve this potential, effective and efficient ways of generating THz radiation are required. Devices which exhibit negative differential resistance (NDR) in their current-voltage (I – V) characteristics can be used for the generation of these radio frequency (RF) signals. Among them, the resonant tunnelling diode (RTD) is considered to be one of the most promising solid-state sources for millimeter and submillimeter wave radiation, which can operate at room temperature. However, the main limitations of RTD oscillators are producing high output power and increasing the DC-to-RF conversion efficiency. Although oscillation frequencies of up to 1.98 THz have been already reported, the output power is in the range of micro-Watts and conversion efficiencies are under 1 %. This thesis describes the systematic work done on the design, fabrication, and characterization of RTD-based oscillators in monolithic microwave/millimeter-wave integrated circuits (MMIC) that can produce high output power and have a high conversion efficiency at the same time. At the device level, parasitic oscillations caused by the biasing line inductance when the diode is biased in the NDR region prevents accurate characterization and compromises the maximum RF power output. In order to stabilise the NDR devices, a common method is the use of a suitable resistor connected across the device, to make the differential resistance in the NDR region positive. However, this approach severely hinders the diode’s performance in terms of DC-to-RF conversion efficiency. In this work, a new DC bias decoupling circuit topology has been developed to enable accurate, direct measurements of the device’s NDR characteristic and when implemented in an oscillator design provides over a 10-fold improvement in DC-to-RF conversion efficiency. The proposed method can be adapted for higher frequency and higher power devices and could have a major impact with regards to the adoption of RTD technology, especially for portable devices where power consumption must be taken into consideration. RF and DC characterization of the device were used in the realization on an accurate large-signal model of the RTD. S-parameter measurements were used to determine an accurate small-signal model for the device’s capacitance and inductance, while the extracted DC characteristics where used to replicate the I-V characteristics. The model is able to replicate the non-stable behavior of RTD devices when biased in the NDR region and the RF characteristics seen in oscillator circuits. It is expected that the developed model will serve in future optimization processes of RTD devices in millimeter and submillimeter wave applications. Finally, a wireless data transmission link operating in the Ka-band (26.5 GHz – – 40 GHz) using two RTDs operating as a transmitter and receiver is presented in this thesis. Wireless error-free data transfer of up to 2 gigabits per second (Gbit/s) was achieved at a transmission distance of 15 cm. In summary, this work makes important contributions to the accurate characterization, and modeling of RTDs and demonstrates the feasibility of this technology for use in future portable wireless communication systems and imaging setups

    Ku band rotary traveling-wave voltage controlled oscillator

    Get PDF
    Voltage-controlled oscillator (VCO) plays a key role in determination of the link budget of wireless communication, and consequently the performance of the transceiver. Lowering the noise contribution from the VCO to the entire system is always challenging and remains the active research area. Motivated by high demands for the low-phase noise, low-power consumption VCO in the application of 5G, radar-sensing system, implantable device, to name a few, this research focused on the design of a rotary travelling-wave oscillator (RTWO). A power conscious RTWO with reliable direction control of the wave propagation was investigated. The phase noise was analyzed based on the proposed RTWO. The phase noise reduction technique was introduced by using tail current source filtering technique in which a figure-8 inductors were employed. Three RTWO were implemented based on GF 130 nm standard CMOS process and TSMC 130 nm standard CMOS process. The first design was achieving 16-GHz frequency with power consumption of 5.8-mW with 190.3 dBc/Hz FoM at 1 MHz offset. The second and third design were operating at 14-GHz with a power consumption range of 13-18.4mW and 14.6-20.5mW, respectively. The one with filtering technique achieved FoM of 184.8 dBc/Hz at 1 MHz whereas the one without inudctor filtering obtained FoM of 180.8 dBc/Hz at 1 MHz offset based on simulation

    NASA Tech Briefs, December 1989

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

    Center for Space Microelectronics Technology

    Get PDF
    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents

    Optical generation of mm-wave signals for use in broadband radio over fiber systems

    Get PDF
    In future cellular radio networks Radio over Fiber (RoF) is a very attractive technology to deliver microwave and millimeter-wave signals containing broad band multimedia services to numerous base stations of the network. The radio signals are placed on an optical carrier and distributed by means of an optical fiber network to the base stations (BS). In the BS the optical signals heterodyne in a photodiode to produce the radio signals which are then sent via a wireless link to the mobile units (MU). The optical fiber network provides high frequency, wideband, low loss and a means of signal distribution immune to electromagnetic interference. In this thesis, different methods of electrooptical upconversion were investigated. The generation of an optical double-sideband with suppressed carrier (DSB-SC) signal is a straightforward method due to the fact that only one optical modulator driven at half the millimeter-wave frequency is required. One or both sidebands were ASK-modulated with baseband data rates of up to 10 Gbps. Optical single sideband modulation proves to be dispersion resilient as error free transmission was demonstrated after 53 km of single mode fiber transmission for data rates up to 10 Gbps. Wireless links up to 7 m were also demonstrated, proving the feasibility of this approach for broadband wireless inhouse access systems.Für zukünftige zellulare Funknetze ist „Radio over Fiber (RoF)“ eine sehr attraktive Technologie, um breitbandige Multimedia-Dienste mit Mikro- und Millimeterwellen zu übertragen. Die Funksignale werden dabei auf eine optische Trägerwelle aufmoduliert und mittels eines optischen Fasernetzes zu den Basisstationen (BS) verteilt. In den BS erfolgt die Überlagung der optischen Signale durch eine Fotodiode, um die Funksignale zu erzeugen. Diese werden dann über eine drahtlose Verbindung zu den beweglichen Multimedia-Endgeräten geschickt. Vorteile des optischen Fasernetzes sind Breitbandigkeit, geringe Dämpfung und eine gegenüber elektromagnetischen Störungen immune Signalverteilung. In dieser Arbeit werden verschiedene Methoden der elektrooptischen Aufwärtskonversion erforscht und die wichtigsten Eigenschaften dieser untersucht. Die Erzeugung eines optischen Zweiseitenbandsignales mit unterdrücktem Träger (DSB-SC) ist eine einfache Methode, da nur ein optischer Modulator, betrieben mit der halben elektrischen Trägerfrequenz, benötigt wird. Eine oder beide Seitenbänder konnten mit Bitraten bis zu 10 Gbps amplitudenmoduliert werden. Optische Einseitenbandmodulation ist extrem tolerant bezüglich der chromatischen Dispersion der Faser, wie die fehlerfreie Übertragung nach 53 km Glasfaser beweist. Drahtlose Links bis zu 7 m wurden realisiert und zeigen die Möglichkeit dieser Verfahren für breitbandige drahtlose Inhouse-Zugangssysteme
    corecore