9,316 research outputs found

    Synthetic speech detection and audio steganography in VoIP scenarios

    Get PDF
    The distinction between synthetic and human voice uses the techniques of the current biometric voice recognition systems, which prevent that a person’s voice, no matter if with good or bad intentions, can be confused with someone else’s. Steganography gives the possibility to hide in a file without a particular value (usually audio, video or image files) a hidden message in such a way as to not rise suspicion to any external observer. This article suggests two methods, applicable in a VoIP hypothetical scenario, which allow us to distinguish a synthetic speech from a human voice, and to insert within the Comfort Noise a text message generated in the pauses of a voice conversation. The first method takes up the studies already carried out for the Modulation Features related to the temporal analysis of the speech signals, while the second one proposes a technique that derives from the Direct Sequence Spread Spectrum, which consists in distributing the signal energy to hide on a wider band transmission. Due to space limits, this paper is only an extended abstract. The full version will contain further details on our research

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks

    Experiments on the DCASE Challenge 2016: Acoustic Scene Classification and Sound Event Detection in Real Life Recording

    Get PDF
    In this paper we present our work on Task 1 Acoustic Scene Classi- fication and Task 3 Sound Event Detection in Real Life Recordings. Among our experiments we have low-level and high-level features, classifier optimization and other heuristics specific to each task. Our performance for both tasks improved the baseline from DCASE: for Task 1 we achieved an overall accuracy of 78.9% compared to the baseline of 72.6% and for Task 3 we achieved a Segment-Based Error Rate of 0.76 compared to the baseline of 0.91
    • …
    corecore