55,647 research outputs found

    Visual Question Answering: A Survey of Methods and Datasets

    Full text link
    Visual Question Answering (VQA) is a challenging task that has received increasing attention from both the computer vision and the natural language processing communities. Given an image and a question in natural language, it requires reasoning over visual elements of the image and general knowledge to infer the correct answer. In the first part of this survey, we examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to connect the visual and textual modalities. In particular, we examine the common approach of combining convolutional and recurrent neural networks to map images and questions to a common feature space. We also discuss memory-augmented and modular architectures that interface with structured knowledge bases. In the second part of this survey, we review the datasets available for training and evaluating VQA systems. The various datatsets contain questions at different levels of complexity, which require different capabilities and types of reasoning. We examine in depth the question/answer pairs from the Visual Genome project, and evaluate the relevance of the structured annotations of images with scene graphs for VQA. Finally, we discuss promising future directions for the field, in particular the connection to structured knowledge bases and the use of natural language processing models.Comment: 25 page

    HIERARCHICAL CLUSTERING USING LEVEL SETS

    Get PDF
    Over the past several decades, clustering algorithms have earned their place as a go-to solution for database mining. This paper introduces a new concept which is used to develop a new recursive version of DBSCAN that can successfully perform hierarchical clustering, called Level- Set Clustering (LSC). A level-set is a subset of points of a data-set whose densities are greater than some threshold, ‘t’. By graphing the size of each level-set against its respective ‘t,’ indents are produced in the line graph which correspond to clusters in the data-set, as the points in a cluster have very similar densities. This new algorithm is able to produce the clustering result with the same O(n log n) time complexity as DBSCAN and OPTICS, while catching clusters the others missed
    • …
    corecore