597 research outputs found

    The Digital Puglia Project: An Active Digital Library of Remote Sensing Data

    Get PDF
    The growing need of software infrastructure able to create, maintain and ease the evolution of scientific data, promotes the development of digital libraries in order to provide the user with fast and reliable access to data. In a world that is rapidly changing, the standard view of a digital library as a data repository specialized to a community of users and provided with some search tools is no longer tenable. To be effective, a digital library should be an active digital library, meaning that users can process available data not just to retrieve a particular piece of information, but to infer new knowledge about the data at hand. Digital Puglia is a new project, conceived to emphasize not only retrieval of data to the client's workstation, but also customized processing of the data. Such processing tasks may include data mining, filtering and knowledge discovery in huge databases, compute-intensive image processing (such as principal component analysis, supervised classification, or pattern matching) and on demand computing sessions. We describe the issues, the requirements and the underlying technologies of the Digital Puglia Project, whose final goal is to build a high performance distributed and active digital library of remote sensing data

    NASA Thesaurus Supplement: A three part cumulative supplement to the 1982 edition of the NASA Thesaurus (supplement 2)

    Get PDF
    The three part cumulative NASA Thesaurus Supplement to the 1982 edition of the NASA Thesaurus includes: part 1, hierarchical listing; part 2, access vocabulary, and part 3, deletions. The semiannual supplement gives complete hierarchies for new terms and includes new term indications for terms new to this supplement

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    NASA Thesaurus Supplement: A three part cumulative supplement to the 1982 edition of the NASA Thesaurus (supplement 3)

    Get PDF
    The three part cumulative NASA Thesaurus Supplement to the 1982 edition of the NASA Thesaurus includes Part 1, Hierarchical Listing, Part 2, Access Vocabulary, and Part 3, Deletions. The semiannual supplement gives complete hierarchies for new terms and includes new term indications for entries new to this supplement

    A VLSI implementation for synthetic aperture radar image processing

    Get PDF
    A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory

    Parallel processing in a host plus multiple array processor system for radar

    Get PDF
    Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated

    Working Papers: Astronomy and Astrophysics Panel Reports

    Get PDF
    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities

    Scalable Parallel Computers for Real-Time Signal Processing

    Get PDF
    We assess the state-of-the-art technology in massively parallel processors (MPPs) and their variations in different architectural platforms. Architectural and programming issues are identified in using MPPs for time-critical applications such as adaptive radar signal processing. We review the enabling technologies. These include high-performance CPU chips and system interconnects, distributed memory architectures, and various latency hiding mechanisms. We characterize the concept of scalability in three areas: resources, applications, and technology. Scalable performance attributes are analytically defined. Then we compare MPPs with symmetric multiprocessors (SMPs) and clusters of workstations (COWs). The purpose is to reveal their capabilities, limits, and effectiveness in signal processing. We evaluate the IBM SP2 at MHPCC, the Intel Paragon at SDSC, the Gray T3D at Gray Eagan Center, and the Gray T3E and ASCI TeraFLOP system proposed by Intel. On the software and programming side, we evaluate existing parallel programming environments, including the models, languages, compilers, software tools, and operating systems. Some guidelines for program parallelization are provided. We examine data-parallel, shared-variable, message-passing, and implicit programming models. Communication functions and their performance overhead are discussed. Available software tools and communication libraries are also introducedpublished_or_final_versio

    REMOTE DETECTION OF EPHEMERAL WETLANDS IN MID- ATLANTIC COASTAL PLAIN ECOREGIONS: LIDAR AND HIGH-THROUGHPUT COMPUTING

    Get PDF
    Ephemeral wetlands are ecologically important freshwater ecosystems that occur frequently throughout the Atlantic coastal plain ecoregions of North America. Despite the growing consensus of their importance and imperilment, these systems historically have not been a national conservation priority. They are often cryptic on the landscape and methods to detect ephemeral wetlands remotely have been ineffective at the landscape scales necessary for conservation planning and resource management. Therefore, this study fills information gaps by employing high-resolution light detection and ranging (LiDAR) data to create local relief models that elucidate small localized changes in concavity. Relief models were then processed with local indicators of spatial association (LISA) in order to automate their detection by measuring autocorrelation among model indices. Following model development and data processing, field validation of 114 predicted wetland locations was conducted using a random stratified design proportional to landcover, to measure model commission (α) and omission (β) error rates. Wetland locations were correctly predicted at 85% of visited sites with α error rate = 15% and β error rate = 5%. These results suggest that devised local relief models captured small geomorphologic changes that successfully predict ephemeral wetland boundaries in low-relief ecosystems. Small wetlands are often centers of biodiversity in forested landscapes and this analysis will facilitate their detection, the first step towards long-term management

    Displacements Monitoring over Czechia by IT4S1 System for Automatised Interferometric Measurements Using Sentinel-1 Data

    Get PDF
    The Sentinel-1 satellite system continuously observes European countries at a relatively high revisit frequency of six days per orbital track. Given the Sentinel-1 configuration, most areas in Czechia are observed every 1–2 days by different tracks in a moderate resolution. This is attractive for various types of analyses by various research groups. The starting point for interferometric (InSAR) processing is an original data provided in a Single Look Complex (SLC) level. This work represents advantages of storing data augmented to a specifically corrected level of data, SLC-C. The presented database contains Czech nationwide Sentinel-1 data stored in burst units that have been pre-processed to the state of a consistent well-coregistered dataset of SLC-C. These are resampled SLC data with their phase values reduced by a topographic phase signature, ready for fast interferometric analyses (an interferogram is generated by a complex conjugate between two stored SLC-C files). The data can be used directly into multitemporal interferometry techniques, e.g., Persistent Scatterers (PS) or Small Baseline (SB) techniques applied here. A further development of the nationwide system utilising SLC-C data would lead into a dynamic state where every new pre-processed burst triggers a processing update to detect unexpected changes from InSAR time series and therefore provides a signal for early warning against a potential dangerous displacement, e.g., a landslide, instability of an engineering structure or a formation of a sinkhole. An update of the processing chain would also allow use of cross-polarised Sentinel-1 data, needed for polarimetric analyses. The current system is running at a national supercomputing centre IT4Innovations in interconnection to the Czech Copernicus Collaborative Ground Segment (CESNET), providing fast on-demand InSAR results over Czech territories. A full nationwide PS processing using data over Czechia was performed in 2017, discovering several areas of land deformation. Its downsampled version and basic findings are demonstrated within the article
    corecore