986 research outputs found

    A Review of Sensor Technologies for Perception in Automated Driving

    Get PDF
    After more than 20 years of research, ADAS are common in modern vehicles available in the market. Automated Driving systems, still in research phase and limited in their capabilities, are starting early commercial tests in public roads. These systems rely on the information provided by on-board sensors, which allow to describe the state of the vehicle, its environment and other actors. Selection and arrangement of sensors represent a key factor in the design of the system. This survey reviews existing, novel and upcoming sensor technologies, applied to common perception tasks for ADAS and Automated Driving. They are put in context making a historical review of the most relevant demonstrations on Automated Driving, focused on their sensing setup. Finally, the article presents a snapshot of the future challenges for sensing technologies and perception, finishing with an overview of the commercial initiatives and manufacturers alliances that will show future market trends in sensors technologies for Automated Vehicles.This work has been partly supported by ECSEL Project ENABLE- S3 (with grant agreement number 692455-2), by the Spanish Government through CICYT projects (TRA2015- 63708-R and TRA2016-78886-C3-1-R)

    Fusion of Data from Heterogeneous Sensors with Distributed Fields of View and Situation Evaluation for Advanced Driver Assistance Systems

    Get PDF
    In order to develop a driver assistance system for pedestrian protection, pedestrians in the environment of a truck are detected by radars and a camera and are tracked across distributed fields of view using a Joint Integrated Probabilistic Data Association filter. A robust approach for prediction of the system vehicles trajectory is presented. It serves the computation of a probabilistic collision risk based on reachable sets where different sources of uncertainty are taken into account

    Publications of the Jet Propulsion Laboratory, 1979

    Get PDF
    This bibliography includes 1004 technical reports, released during calendar year 1979, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network Progress Report. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first listed) author. Unless designated otherwise, all publications listed are unclassified

    Street Surfaces and Boundaries from Depth Image Sequences Using Probabilistic Models

    Get PDF
    This thesis presents an approach for the detection and reconstruction of street surfaces and boundaries from depth image sequences. Active driver assistance systems which monitor and interpret the environment based on vehicle mounted sensors to support the driver embody a current research focus of the automotive industry. An essential task of these systems is the modeling of the vehicle's static environment. This comprises the determination of the vertical slope and curvature characteristics of the street surface as well as the robust detection of obstacles and, thus, the free drivable space (alias free-space). In this regard, obstacles of low height, e.g. curbs, are of special interest since they often embody the first geometric delimiter of the free-space. The usage of depth images acquired from stereo camera systems becomes more important in this context due to the high data rate and affordable price of the sensor. However, recent approaches for object detection are often limited to the detection of objects which are distinctive in height, such as cars and guardrails, or explicitly address the detection of particular object classes. These approaches are usually based on extremely restrictive assumptions, such as planar street surfaces, in order to deal with the high measurement noise. The main contribution of this thesis is the development, analysis and evaluation of an approach which detects the free-space in the immediate maneuvering area in front of the vehicle and explicitly models the free-space boundary by means of a spline curve. The approach considers in particular obstacles of low height (higher than 10 cm) without limitation on particular object classes. Furthermore, the approach has the ability to cope with various slope and curvature characteristics of the observed street surface and is able to reconstruct this surface by means of a flexible spline model. In order to allow for robust results despite the flexibility of the model and the high measurement noise, the approach employs probabilistic models for the preprocessing of the depth map data as well as for the detection of the drivable free-space. An elevation model is computed from the depth map considering the paths of the optical rays and the uncertainty of the depth measurements. Based on this elevation model, an iterative two step approach is performed which determines the drivable free-space by means of a Markov Random Field and estimates the spline parameters of the free-space boundary curve and the street surface. Outliers in the elevation data are explicitly modeled. The performance of the overall approach and the influence of key components are systematically evaluated within experiments on synthetic and real world test scenarios. The results demonstrate the ability of the approach to accurately model the boundary of the drivable free-space as well as the street surface even in complex scenarios with multiple obstacles or strong curvature of the street surface. The experiments further reveal the limitations of the approach, which are discussed in detail.Schätzung von Straßenoberflächen und -begrenzungen aus Sequenzen von Tiefenkarten unter Verwendung probabilistischer Modelle Diese Arbeit präsentiert ein Verfahren zur Detektion und Rekonstruktion von Straßenoberflächen und -begrenzungen auf der Basis von Tiefenkarten. Aktive Fahrerassistenzsysteme, welche mit der im Fahrzeug verbauten Sensorik die Umgebung erfassen, interpretieren und den Fahrer unterstützen, sind ein aktueller Forschungsschwerpunkt der Fahrzeugindustrie. Eine wesentliche Aufgabe dieser Systeme ist die Modellierung der statischen Fahrzeugumgebung. Dies beinhaltet die Bestimmung der vertikalen Neigungs- und Krümmungseigenschaften der Fahrbahn, sowie die robuste Detektion von Hindernissen und somit des befahrbaren Freiraumes. Hindernisse von geringer Höhe, wie z.B. Bordsteine, sind in diesem Zusammenhang von besonderem Interesse, da sie häufig die erste geometrische Begrenzung des Fahrbahnbereiches darstellen. In diesem Kontext gewinnt die Verwendung von Tiefenkarten aus Stereo-Kamera-Systemen wegen der hohen Datenrate und relativ geringen Kosten des Sensors zunehmend an Bedeutung. Aufgrund des starken Messrauschens beschränken sich herkömmliche Verfahren zur Hinderniserkennung jedoch meist auf erhabene Objekte wie Fahrzeuge oder Leitplanken, oder aber adressieren einzelne Objektklassen wie Bordsteine explizit. Dazu werden häufig extrem restriktive Annahmen verwendet wie z.B. planare Straßenoberflächen. Der Hauptbeitrag dieser Arbeit besteht in der Entwicklung, Analyse und Evaluation eines Verfahrens, welches den befahrbaren Freiraum im Nahbereich des Fahrzeugs detektiert und dessen Begrenzung mit Hilfe einer Spline-Kurve explizit modelliert. Das Verfahren berücksichtigt insbesondere Hindernisse geringer Höhe (größer als 10 cm) ohne Beschränkung auf bestimmte Objektklassen. Weiterhin ist das Verfahren in der Lage, mit verschiedenartigen Neigungs- und Krümmungseigenschaften der vor dem Fahrzeug liegenden Fahrbahnoberfläche umzugehen und diese durch Verwendung eines flexiblen Spline-Modells zu rekonstruieren. Um trotz der hohen Flexibilität des Modells und des hohen Messrauschens robuste Ergebnisse zu erzielen, verwendet das Verfahren probabilistische Modelle zur Vorverarbeitung der Eingabedaten und zur Detektion des befahrbaren Freiraumes. Aus den Tiefenkarten wird unter Berücksichtigung der Strahlengänge und Unsicherheiten der Tiefenmessungen ein Höhenmodell berechnet. In einem iterativen Zwei-Schritt-Verfahren werden anhand dieses Höhenmodells der befahrbare Freiraum mit Hilfe eines Markov-Zufallsfeldes bestimmt sowie die Parameter der begrenzenden Spline-Kurve und Straßenoberfläche geschätzt. Ausreißer in den Höhendaten werden dabei explizit modelliert. Die Leistungsfähigkeit des Gesamtverfahrens sowie der Einfluss zentraler Komponenten, wird im Rahmen von Experimenten auf synthetischen und realen Testszenen systematisch analysiert. Die Ergebnisse demonstrieren die Fähigkeit des Verfahrens, die Begrenzung des befahrbaren Freiraumes sowie die Fahrbahnoberfläche selbst in komplexen Szenarien mit multiplen Hindernissen oder starker Fahrbahnkrümmung akkurat zu modellieren. Weiterhin werden die Grenzen des Verfahrens aufgezeigt und detailliert untersucht

    On Improved Accuracy Chirp Parameter Estimation using the DFRFT with Application to SAR-based Vibrometry

    Get PDF
    The Discrete Fractional Fourier Transform (DFRFT) has in recent years, become a useful tool for multicomponent chirp signal analysis. Chirp signals are transformed into spectral peaks in the chirp rate versus center frequency representation, whose coordinates are related to the underlying chirp parameters via a computed empirical peak to parameter mapping incorporated into the Santhanam-Peacock algorithm. In this thesis, we attempt to quantify the accuracy of the DFRFT approach by first studying the discretization error sources that arise from the transitioning of the continuous FRFT to DFRFT. Then, we refine prior work by Ishwor Bhatta to develop analytical expressions for the chirp rate and center frequency parameters instead of the empirical mapping approach. We further study the extensions of this refined DFRFT approach using zero padding, spectral peak interpolation, and chirp-z-transform based zooming. The performance of the refined estimators is compared versus the Cramer-Rao lower bound and shown to asymptotically approach the bound. This refined DFRFT approach is then applied to Synthetic Aperture Radar Vibrometry data from several vibrating targets and the estimated acceleration information and vibration frequencies are shown to be very close to the corresponding ground-truth accelerometer measurements

    A 77 GHz Reconfigurable Micromachined Microstrip Antenna Array

    Get PDF
    A micromachined silicon based MEMS single-pole-Single-Throw (SPST) switches embedded reconfigurable microstrip antenna array for use in a 77 GHz tri-mode automotive collision avoidance radar is presented. The emphasis is put on compact 77 GHz micromachined microstrip antenna array, capable of being integrated with silicon base Rotman lens that provides an intrinsic beamforming capability without any microelectronic signal processing. The first part of this thesis deals with the theory behind microstrip antennas and a deep explanation of antenna arrays. The second part of the thesis is concerned with design procedures and considerations. It provides a detailed study of how to design and fabricate an inset fed rectangular micromachined microstrip patch antenna array using XFDTD 3-D software and study the effect of antenna dimensions. At last, this thesis shows the simulation results that by incorporating a micromachined technology into microstrip antenna array we are able to achieve higher radiation efficiency and bandwidth than conventional antenna array

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em

    High-Precision Automotive Radar Target Simulation

    Get PDF
    Radar target simulators (RTSs) deceive a radar under test (RuT) by creating an artificial environment consisting of virtual radar targets. In this work, new techniques are presented that overcome the rasterization deficiency of current RTS systems and enable the generation of virtual targets at arbitrary high-precision positions. This allows for continuous movement of the targets and thus a more credible simulation environment

    A quasi-real-time inertialess microwave holographic imaging system

    Get PDF
    This thesis records the theoretical analysis and hardware development of a laboratory microwave imaging system which uses holographic principles. The application of an aperture synthesis technique and the electronic commutation of all antennae has resulted in a compact and economic assembly - which requires no moving parts and which, consequently, has a high field mapping speed potential. The relationship of this microwave holographic system to other established techniques is examined theoretically and the performance of the imaging system is demonstrated using conventional optically- and numerically-based reconstruction of the measured holograms. The high mapping speed potential of this system has allowed the exploitation of an imaging mode not usually associated with microwave holography. In particular, a certain antenna array specification leads to a versatile imaging system which corresponds closely in the laboratory scale to the widely used synthetic aperture radar principle. It is envisaged that the microwave holographic implementation of this latter principle be used as laboratory instrumentation in the elucidation of the interaction of hydrodynamic and electromagnetic waves. Some simple demonstrations of this application have been presented, and the concluding chapter also describes a suitable hardware specification. This thesis has also emphasised the hardware details of the imaging system since the development of the microwave and other electronic components represented a substantial part of this research and because the potential applications of the imaging principle have been found to be intimately linked to the tolerances of the various microwave components. Bibliography: pages 122-132

    All-weather object recognition using radar and infrared sensing

    Get PDF
    Autonomous cars are an emergent technology which has the capacity to change human lives. The current sensor systems which are most capable of perception are based on optical sensors. For example, deep neural networks show outstanding results in recognising objects when used to process data from cameras and Light Detection And Ranging (LiDAR) sensors. However these sensors perform poorly under adverse weather conditions such as rain, fog, and snow due to the sensor wavelengths. This thesis explores new sensing developments based on long wave polarised infrared (IR) imagery and imaging radar to recognise objects. First, we developed a methodology based on Stokes parameters using polarised infrared data to recognise vehicles using deep neural networks. Second, we explored the potential of using only the power spectrum captured by low-THz radar sensors to perform object recognition in a controlled scenario. This latter work is based on a data-driven approach together with the development of a data augmentation method based on attenuation, range and speckle noise. Last, we created a new large-scale dataset in the ”wild” with many different weather scenarios (sunny, overcast, night, fog, rain and snow) showing radar robustness to detect vehicles in adverse weather. High resolution radar and polarised IR imagery, combined with a deep learning approach, are shown as a potential alternative to current automotive sensing systems based on visible spectrum optical technology as they are more robust in severe weather and adverse light conditions.UK Engineering and Physical Research Council, grant reference EP/N012402/
    corecore