363 research outputs found

    Predicting and Reducing the Impact of Errors in Character-Based Text Entry

    Get PDF
    This dissertation focuses on the effect of errors in character-based text entry techniques. The effect of errors is targeted from theoretical, behavioral, and practical standpoints. This document starts with a review of the existing literature. It then presents results of a user study that investigated the effect of different error correction conditions on popular text entry performance metrics. Results showed that the way errors are handled has a significant effect on all frequently used error metrics. The outcomes also provided an understanding of how users notice and correct errors. Building on this, the dissertation then presents a new high-level and method-agnostic model for predicting the cost of error correction with a given text entry technique. Unlike the existing models, it accounts for both human and system factors and is general enough to be used with most character-based techniques. A user study verified the model through measuring the effects of a faulty keyboard on text entry performance. Subsequently, the work then explores the potential user adaptation to a gesture recognizer’s misrecognitions in two user studies. Results revealed that users gradually adapt to misrecognition errors by replacing the erroneous gestures with alternative ones, if available. Also, users adapt to a frequently misrecognized gesture faster if it occurs more frequently than the other error-prone gestures. Finally, this work presents a new hybrid approach to simulate pressure detection on standard touchscreens. The new approach combines the existing touch-point- and time-based methods. Results of two user studies showed that it can simulate pressure detection more reliably for at least two pressure levels: regular (~1 N) and extra (~3 N). Then, a new pressure-based text entry technique is presented that does not require tapping outside the virtual keyboard to reject an incorrect or unwanted prediction. Instead, the technique requires users to apply extra pressure for the tap on the next target key. The performance of the new technique was compared with the conventional technique in a user study. Results showed that for inputting short English phrases with 10% non-dictionary words, the new technique increases entry speed by 9% and decreases error rates by 25%. Also, most users (83%) favor the new technique over the conventional one. Together, the research presented in this dissertation gives more insight into on how errors affect text entry and also presents improved text entry methods

    Contributions to Pen & Touch Human-Computer Interaction

    Full text link
    [EN] Computers are now present everywhere, but their potential is not fully exploited due to some lack of acceptance. In this thesis, the pen computer paradigm is adopted, whose main idea is to replace all input devices by a pen and/or the fingers, given that the origin of the rejection comes from using unfriendly interaction devices that must be replaced by something easier for the user. This paradigm, that was was proposed several years ago, has been only recently fully implemented in products, such as the smartphones. But computers are actual illiterates that do not understand gestures or handwriting, thus a recognition step is required to "translate" the meaning of these interactions to computer-understandable language. And for this input modality to be actually usable, its recognition accuracy must be high enough. In order to realistically think about the broader deployment of pen computing, it is necessary to improve the accuracy of handwriting and gesture recognizers. This thesis is devoted to study different approaches to improve the recognition accuracy of those systems. First, we will investigate how to take advantage of interaction-derived information to improve the accuracy of the recognizer. In particular, we will focus on interactive transcription of text images. Here the system initially proposes an automatic transcript. If necessary, the user can make some corrections, implicitly validating a correct part of the transcript. Then the system must take into account this validated prefix to suggest a suitable new hypothesis. Given that in such application the user is constantly interacting with the system, it makes sense to adapt this interactive application to be used on a pen computer. User corrections will be provided by means of pen-strokes and therefore it is necessary to introduce a recognizer in charge of decoding this king of nondeterministic user feedback. However, this recognizer performance can be boosted by taking advantage of interaction-derived information, such as the user-validated prefix. Then, this thesis focuses on the study of human movements, in particular, hand movements, from a generation point of view by tapping into the kinematic theory of rapid human movements and the Sigma-Lognormal model. Understanding how the human body generates movements and, particularly understand the origin of the human movement variability, is important in the development of a recognition system. The contribution of this thesis to this topic is important, since a new technique (which improves the previous results) to extract the Sigma-lognormal model parameters is presented. Closely related to the previous work, this thesis study the benefits of using synthetic data as training. The easiest way to train a recognizer is to provide "infinite" data, representing all possible variations. In general, the more the training data, the smaller the error. But usually it is not possible to infinitely increase the size of a training set. Recruiting participants, data collection, labeling, etc., necessary for achieving this goal can be time-consuming and expensive. One way to overcome this problem is to create and use synthetically generated data that looks like the human. We study how to create these synthetic data and explore different approaches on how to use them, both for handwriting and gesture recognition. The different contributions of this thesis have obtained good results, producing several publications in international conferences and journals. Finally, three applications related to the work of this thesis are presented. First, we created Escritorie, a digital desk prototype based on the pen computer paradigm for transcribing handwritten text images. Second, we developed "Gestures à Go Go", a web application for bootstrapping gestures. Finally, we studied another interactive application under the pen computer paradigm. In this case, we study how translation reviewing can be done more ergonomically using a pen.[ES] Hoy en día, los ordenadores están presentes en todas partes pero su potencial no se aprovecha debido al "miedo" que se les tiene. En esta tesis se adopta el paradigma del pen computer, cuya idea fundamental es sustituir todos los dispositivos de entrada por un lápiz electrónico o, directamente, por los dedos. El origen del rechazo a los ordenadores proviene del uso de interfaces poco amigables para el humano. El origen de este paradigma data de hace más de 40 años, pero solo recientemente se ha comenzado a implementar en dispositivos móviles. La lenta y tardía implantación probablemente se deba a que es necesario incluir un reconocedor que "traduzca" los trazos del usuario (texto manuscrito o gestos) a algo entendible por el ordenador. Para pensar de forma realista en la implantación del pen computer, es necesario mejorar la precisión del reconocimiento de texto y gestos. El objetivo de esta tesis es el estudio de diferentes estrategias para mejorar esta precisión. En primer lugar, esta tesis investiga como aprovechar información derivada de la interacción para mejorar el reconocimiento, en concreto, en la transcripción interactiva de imágenes con texto manuscrito. En la transcripción interactiva, el sistema y el usuario trabajan "codo con codo" para generar la transcripción. El usuario valida la salida del sistema proporcionando ciertas correcciones, mediante texto manuscrito, que el sistema debe tener en cuenta para proporcionar una mejor transcripción. Este texto manuscrito debe ser reconocido para ser utilizado. En esta tesis se propone aprovechar información contextual, como por ejemplo, el prefijo validado por el usuario, para mejorar la calidad del reconocimiento de la interacción. Tras esto, la tesis se centra en el estudio del movimiento humano, en particular del movimiento de las manos, utilizando la Teoría Cinemática y su modelo Sigma-Lognormal. Entender como se mueven las manos al escribir, y en particular, entender el origen de la variabilidad de la escritura, es importante para el desarrollo de un sistema de reconocimiento, La contribución de esta tesis a este tópico es importante, dado que se presenta una nueva técnica (que mejora los resultados previos) para extraer el modelo Sigma-Lognormal de trazos manuscritos. De forma muy relacionada con el trabajo anterior, se estudia el beneficio de utilizar datos sintéticos como entrenamiento. La forma más fácil de entrenar un reconocedor es proporcionar un conjunto de datos "infinito" que representen todas las posibles variaciones. En general, cuanto más datos de entrenamiento, menor será el error del reconocedor. No obstante, muchas veces no es posible proporcionar más datos, o hacerlo es muy caro. Por ello, se ha estudiado como crear y usar datos sintéticos que se parezcan a los reales. Las diferentes contribuciones de esta tesis han obtenido buenos resultados, produciendo varias publicaciones en conferencias internacionales y revistas. Finalmente, también se han explorado tres aplicaciones relaciones con el trabajo de esta tesis. En primer lugar, se ha creado Escritorie, un prototipo de mesa digital basada en el paradigma del pen computer para realizar transcripción interactiva de documentos manuscritos. En segundo lugar, se ha desarrollado "Gestures à Go Go", una aplicación web para generar datos sintéticos y empaquetarlos con un reconocedor de forma rápida y sencilla. Por último, se presenta un sistema interactivo real bajo el paradigma del pen computer. En este caso, se estudia como la revisión de traducciones automáticas se puede realizar de forma más ergonómica.[CA] Avui en dia, els ordinadors són presents a tot arreu i es comunament acceptat que la seva utilització proporciona beneficis. No obstant això, moltes vegades el seu potencial no s'aprofita totalment. En aquesta tesi s'adopta el paradigma del pen computer, on la idea fonamental és substituir tots els dispositius d'entrada per un llapis electrònic, o, directament, pels dits. Aquest paradigma postula que l'origen del rebuig als ordinadors prové de l'ús d'interfícies poc amigables per a l'humà, que han de ser substituïdes per alguna cosa més coneguda. Per tant, la interacció amb l'ordinador sota aquest paradigma es realitza per mitjà de text manuscrit i/o gestos. L'origen d'aquest paradigma data de fa més de 40 anys, però només recentment s'ha començat a implementar en dispositius mòbils. La lenta i tardana implantació probablement es degui al fet que és necessari incloure un reconeixedor que "tradueixi" els traços de l'usuari (text manuscrit o gestos) a alguna cosa comprensible per l'ordinador, i el resultat d'aquest reconeixement, actualment, és lluny de ser òptim. Per pensar de forma realista en la implantació del pen computer, cal millorar la precisió del reconeixement de text i gestos. L'objectiu d'aquesta tesi és l'estudi de diferents estratègies per millorar aquesta precisió. En primer lloc, aquesta tesi investiga com aprofitar informació derivada de la interacció per millorar el reconeixement, en concret, en la transcripció interactiva d'imatges amb text manuscrit. En la transcripció interactiva, el sistema i l'usuari treballen "braç a braç" per generar la transcripció. L'usuari valida la sortida del sistema donant certes correccions, que el sistema ha d'usar per millorar la transcripció. En aquesta tesi es proposa utilitzar correccions manuscrites, que el sistema ha de reconèixer primer. La qualitat del reconeixement d'aquesta interacció és millorada, tenint en compte informació contextual, com per exemple, el prefix validat per l'usuari. Després d'això, la tesi se centra en l'estudi del moviment humà en particular del moviment de les mans, des del punt de vista generatiu, utilitzant la Teoria Cinemàtica i el model Sigma-Lognormal. Entendre com es mouen les mans en escriure és important per al desenvolupament d'un sistema de reconeixement, en particular, per entendre l'origen de la variabilitat de l'escriptura. La contribució d'aquesta tesi a aquest tòpic és important, atès que es presenta una nova tècnica (que millora els resultats previs) per extreure el model Sigma- Lognormal de traços manuscrits. De forma molt relacionada amb el treball anterior, s'estudia el benefici d'utilitzar dades sintètiques per a l'entrenament. La forma més fàcil d'entrenar un reconeixedor és proporcionar un conjunt de dades "infinit" que representin totes les possibles variacions. En general, com més dades d'entrenament, menor serà l'error del reconeixedor. No obstant això, moltes vegades no és possible proporcionar més dades, o fer-ho és molt car. Per això, s'ha estudiat com crear i utilitzar dades sintètiques que s'assemblin a les reals. Les diferents contribucions d'aquesta tesi han obtingut bons resultats, produint diverses publicacions en conferències internacionals i revistes. Finalment, també s'han explorat tres aplicacions relacionades amb el treball d'aquesta tesi. En primer lloc, s'ha creat Escritorie, un prototip de taula digital basada en el paradigma del pen computer per realitzar transcripció interactiva de documents manuscrits. En segon lloc, s'ha desenvolupat "Gestures à Go Go", una aplicació web per a generar dades sintètiques i empaquetar-les amb un reconeixedor de forma ràpida i senzilla. Finalment, es presenta un altre sistema inter- actiu sota el paradigma del pen computer. En aquest cas, s'estudia com la revisió de traduccions automàtiques es pot realitzar de forma més ergonòmica.Martín-Albo Simón, D. (2016). Contributions to Pen & Touch Human-Computer Interaction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68482TESI

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    An analysis of interaction in the context of wearable computers

    Get PDF
    The focus of this thesis is on the evaluation of input modalities for generic input tasks, such inputting text and pointer based interaction. In particular, input systems that can be used within a wearable computing system are examined in terms of human-wearable computer interaction. The literature identified a lack of empirical research into the use of input devices for text input and pointing, when used as part of a wearable computing system. The research carried out within this thesis took an approach that acknowledged the movement condition of the user of a wearable system, and evaluated the wearable input devices while the participants were mobile and stationary. Each experiment was based on the user's time on task, their accuracy, and a NASA TLX assessment which provided the participant's subjective workload. The input devices assessed were 'off the shelf' systems. These were chosen as they are readily available to a wider range of users than bespoke inpu~ systems. Text based input was examined first. The text input systems evaluated were: a keyboard,; an on-screen keyboard, a handwriting recognition system, a voice 'recognition system and a wrist- keyboard (sometimes known as a wrist-worn keyboard). It was found that the most appropriate text input system to use overall, was the handwriting recognition system, (This is forther explored in the discussion of Chapters three and seven.) The text input evaluations were followed by a series of four experiments that examined pointing devices, and assessed their appropriateness as part of a wearable computing system. The devices were; an off-table mouse, a speech recognition system, a stylus and a track-pad. These were assessed in relation to the following generic pointing tasks: target acquisition, dragging and dropping, and trajectory-based interaction. Overall the stylus was found to be the most appropriate input device for use with a wearable system, when used as a pointing device. (This isforther covered in Chapters four to six.) By completing this series of experiments, evidence has been scientifically established that can support both a wearable computer designer and a wearable user's choice of input device. These choices can be made in regard to generic interface task activities such as: inputting text, target acquisition, dragging and dropping and trajectory-based interaction.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Distant pointing in desktop collaborative virtual environments

    Get PDF
    Deictic pointing—pointing at things during conversations—is natural and ubiquitous in human communication. Deictic pointing is important in the real world; it is also important in collaborative virtual environments (CVEs) because CVEs are 3D virtual environments that resemble the real world. CVEs connect people from different locations, allowing them to communicate and collaborate remotely. However, the interaction and communication capabilities of CVEs are not as good as those in the real world. In CVEs, people interact with each other using avatars (the visual representations of users). One problem of avatars is that they are not expressive enough when compare to what we can do in the real world. In particular, deictic pointing has many limitations and is not well supported. This dissertation focuses on improving the expressiveness of distant pointing—where referents are out of reach—in desktop CVEs. This is done by developing a framework that guides the design and development of pointing techniques; by identifying important aspects of distant pointing through observation of how people point at distant referents in the real world; by designing, implementing, and evaluating distant-pointing techniques; and by providing a set of guidelines for the design of distant pointing in desktop CVEs. The evaluations of distant-pointing techniques examine whether pointing without extra visual effects (natural pointing) has sufficient accuracy; whether people can control free arm movement (free pointing) along with other avatar actions; and whether free and natural pointing are useful and valuable in desktop CVEs. Overall, this research provides better support for deictic pointing in CVEs by improving the expressiveness of distant pointing. With better pointing support, gestural communication can be more effective and can ultimately enhance the primary function of CVEs—supporting distributed collaboration

    Evaluating the Efficacy of Implicit Authentication Under Realistic Operating Scenarios

    Get PDF
    Smartphones contain a wealth of personal and corporate data. Several surveys have reported that about half of the smartphone owners do not configure primary authentication mechanisms (such as PINs, passwords, and fingerprint- or facial-recognition systems) on their devices to protect data due to usability concerns. In addition, primary authentication mechanisms have been subject to operating system flaws, smudge attacks, and shoulder surfing attacks. These limitations have prompted researchers to develop implicit authentication (IA), which authenticates a user by using distinctive, measurable patterns of device use that are gathered from the device users without requiring deliberate actions. Researchers have claimed that IA has desirable security and usability properties and it seems a promising candidate to mitigate the security and usability issues of primary authentication mechanisms. Our observation is that the existing evaluations of IA have a preoccupation with accuracy numbers and they have neglected the deployment, usability and security issues that are critical for its adoption. Furthermore, the existing evaluations have followed an ad-hoc approach based on synthetic datasets and weak adversarial models. To confirm our observations, we first identify a comprehensive set of evaluation criteria for IA schemes. We gather real-world datasets and evaluate diverse and prominent IA schemes to question the efficacy of existing IA schemes and to gain insight into the pitfalls of the contemporary evaluation approach to IA. Our evaluation confirms that under realistic operating conditions, several prominent IA schemes perform poorly across key evaluation metrics and thereby fail to provide adequate security. We then examine the usability and security properties of IA by carefully evaluating promising IA schemes. Our usability evaluation shows that the users like the convenience offered by IA. However, it uncovers issues due to IA's transparent operation and false rejects, which are both inherent to IA. It also suggests that detection delay and false accepts are concerns to several users. In terms of security, our evaluation based on a realistic, stronger adversarial model shows the susceptibility of highly accurate, touch input-based IA schemes to shoulder surfing attacks and attacks that train an attacker by leveraging raw touch data of victims. These findings exemplify the significance of realistic adversarial models. These critical security and usability challenges remained unidentified by the previous research efforts due to the passive involvement of human subjects (only as behavioural data sources). This emphasizes the need for rapid prototyping and deployment of IA for an active involvement of human subjects in IA research. To this end, we design, implement, evaluate and release in open source a framework, which reduces the re-engineering effort in IA research and enables deployment of IA on off-the-shelf Android devices. The existing authentication schemes available on contemporary smartphones fail to provide both usability and security. Authenticating users based on their behaviour, as suggested by the literature on IA, is a promising idea. However, this thesis concludes that several results reported in the existing IA literature are misleading due to the unrealistic evaluation conditions and several critical challenges in the IA domain need yet to be resolved. This thesis identifies these challenges and provides necessary tools and design guidelines to establish the future viability of IA

    Guiding Random Graphical and Natural User Interface Testing Through Domain Knowledge

    Get PDF
    Users have access to a diverse set of interfaces that can be used to interact with software. Tools exist for automatically generating test data for an application, but the data required by each user interface is complex. Generating realistic data similar to that of a user is difficult. The environment which an application is running inside may also limit the data available, or updates to an operating system can break support for tools that generate test data. Consequently, applications exist for which there are no automated methods of generating test data similar to that which a user would provide through real usage of a user interface. With no automated method of generating data, the cost of testing increases and there is an increased chance of bugs being released into production code. In this thesis, we investigate techniques which aim to mimic users, observing how stored user interactions can be split to generate data targeted at specific states of an application, or to generate different subareas of the data structure provided by a user interface. To reduce the cost of gathering and labelling graphical user interface data, we look at generating randomised screen shots of applications, which can be automatically labelled and used in the training stage of a machine learning model. These trained models could guide a randomised approach at generating tests, achieving a significantly higher branch coverage than an unguided random approach. However, for natural user interfaces, which allow interaction through body tracking, we could not learn such a model through generated data. We find that models derived from real user data can generate tests with a significantly higher branch coverage than a purely random tester for both natural and graphical user interfaces. Our approaches use no feedback from an application during test generation. Consequently, the models are “generating data in the dark”. Despite this, these models can still generate tests with a higher coverage than random testing, but there may be a benefit to inferring the current state of an application and using this to guide data generation

    On the role of gestures in human-robot interaction

    Get PDF
    This thesis investigates the gestural interaction problem and in particular the usage of gestures for human-robot interaction. The lack of a clear definition of the problem statement and a common terminology resulted in a fragmented field of research where building upon prior work is rare. The scope of the research presented in this thesis, therefore, consists in laying the foundation to help the community to build a more homogeneous research field. The main contributions of this thesis are twofold: (i) a taxonomy to define gestures; and (ii) an ingegneristic definition of the gestural interaction problem. The contributions resulted is a schema to represent the existing literature in a more organic way, helping future researchers to identify existing technologies and applications, also thanks to an extensive literature review. Furthermore, the defined problem has been studied in two of its specialization: (i) direct control and (ii) teaching of a robotic manipulator, which leads to the development of technological solutions for gesture sensing, detection and classification, which can possibly be applied to other contexts
    corecore