5,809 research outputs found

    Data generator for evaluating ETL process quality

    Get PDF
    Obtaining the right set of data for evaluating the fulfillment of different quality factors in the extract-transform-load (ETL) process design is rather challenging. First, the real data might be out of reach due to different privacy constraints, while manually providing a synthetic set of data is known as a labor-intensive task that needs to take various combinations of process parameters into account. More importantly, having a single dataset usually does not represent the evolution of data throughout the complete process lifespan, hence missing the plethora of possible test cases. To facilitate such demanding task, in this paper we propose an automatic data generator (i.e., Bijoux). Starting from a given ETL process model, Bijoux extracts the semantics of data transformations, analyzes the constraints they imply over input data, and automatically generates testing datasets. Bijoux is highly modular and configurable to enable end-users to generate datasets for a variety of interesting test scenarios (e.g., evaluating specific parts of an input ETL process design, with different input dataset sizes, different distributions of data, and different operation selectivities). We have developed a running prototype that implements the functionality of our data generation framework and here we report our experimental findings showing the effectiveness and scalability of our approach.Peer ReviewedPostprint (author's final draft

    IIFA: Modular Inter-app Intent Information Flow Analysis of Android Applications

    Full text link
    Android apps cooperate through message passing via intents. However, when apps do not have identical sets of privileges inter-app communication (IAC) can accidentally or maliciously be misused, e.g., to leak sensitive information contrary to users expectations. Recent research considered static program analysis to detect dangerous data leaks due to inter-component communication (ICC) or IAC, but suffers from shortcomings with respect to precision, soundness, and scalability. To solve these issues we propose a novel approach for static ICC/IAC analysis. We perform a fixed-point iteration of ICC/IAC summary information to precisely resolve intent communication with more than two apps involved. We integrate these results with information flows generated by a baseline (i.e. not considering intents) information flow analysis, and resolve if sensitive data is flowing (transitively) through components/apps in order to be ultimately leaked. Our main contribution is the first fully automatic sound and precise ICC/IAC information flow analysis that is scalable for realistic apps due to modularity, avoiding combinatorial explosion: Our approach determines communicating apps using short summaries rather than inlining intent calls, which often requires simultaneously analyzing all tuples of apps. We evaluated our tool IIFA in terms of scalability, precision, and recall. Using benchmarks we establish that precision and recall of our algorithm are considerably better than prominent state-of-the-art analyses for IAC. But foremost, applied to the 90 most popular applications from the Google Playstore, IIFA demonstrated its scalability to a large corpus of real-world apps. IIFA reports 62 problematic ICC-/IAC-related information flows via two or more apps/components

    Efficient Subgraph Matching on Billion Node Graphs

    Full text link
    The ability to handle large scale graph data is crucial to an increasing number of applications. Much work has been dedicated to supporting basic graph operations such as subgraph matching, reachability, regular expression matching, etc. In many cases, graph indices are employed to speed up query processing. Typically, most indices require either super-linear indexing time or super-linear indexing space. Unfortunately, for very large graphs, super-linear approaches are almost always infeasible. In this paper, we study the problem of subgraph matching on billion-node graphs. We present a novel algorithm that supports efficient subgraph matching for graphs deployed on a distributed memory store. Instead of relying on super-linear indices, we use efficient graph exploration and massive parallel computing for query processing. Our experimental results demonstrate the feasibility of performing subgraph matching on web-scale graph data.Comment: VLDB201

    Tupleware: Redefining Modern Analytics

    Full text link
    There is a fundamental discrepancy between the targeted and actual users of current analytics frameworks. Most systems are designed for the data and infrastructure of the Googles and Facebooks of the world---petabytes of data distributed across large cloud deployments consisting of thousands of cheap commodity machines. Yet, the vast majority of users operate clusters ranging from a few to a few dozen nodes, analyze relatively small datasets of up to a few terabytes, and perform primarily compute-intensive operations. Targeting these users fundamentally changes the way we should build analytics systems. This paper describes the design of Tupleware, a new system specifically aimed at the challenges faced by the typical user. Tupleware's architecture brings together ideas from the database, compiler, and programming languages communities to create a powerful end-to-end solution for data analysis. We propose novel techniques that consider the data, computations, and hardware together to achieve maximum performance on a case-by-case basis. Our experimental evaluation quantifies the impact of our novel techniques and shows orders of magnitude performance improvement over alternative systems

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page
    corecore