82 research outputs found

    Synthetic Biology Open Language Visual (SBOL Visual) Version 2.1

    Get PDF
    People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species . Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.1 of SBOL Visual, which builds on the prior SBOL Visual 2.0 standard by expanding diagram syntax to include methods for showing modular structure and mappings between elements of a system, interactions arrows that can split or join (with the glyph at the split or join indicating either superposition or a chemical process), and adding new glyphs for indicating genomic context (e.g., integration into a plasmid or genome) and for stop codons

    Specifications of standards in systems and synthetic biology: status and developments in 2021

    Get PDF
    This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards

    Specifications of standards in systems and synthetic biology: Status and developments in 2020

    Get PDF
    This special issue of the Journal of Integrative Bioinformatics presents papers related to the 10th COMBINE meeting together with the annual update of COMBINE standards in systems and synthetic biology

    Specifications of standards in systems and synthetic biology: status and developments in 2022 and the COMBINE meeting 2022

    Get PDF
    This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin

    The Synthetic Biology Open Language (SBOL) Version 3:Simplified Data Exchange for Bioengineering

    Get PDF
    The Synthetic Biology Open Language (SBOL) is a community-developed data standard that allows knowledge about biological designs to be captured using a machine-tractable, ontology-backed representation that is built using Semantic Web technologies. While early versions of SBOL focused only on the description of DNA-based components and their sub-components, SBOL can now be used to represent knowledge across multiple scales and throughout the entire synthetic biology workflow, from the specification of a single molecule or DNA fragment through to multicellular systems containing multiple interacting genetic circuits. The third major iteration of the SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model with a focus on real-world applications, based on experience from the deployment of SBOL in a variety of scientific and industrial settings. Here, we introduce the SBOL3 specification both in comparison to previous versions of SBOL and through practical examples of its use

    Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0

    Get PDF
    People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.0 of SBOL Visual, which builds on the prior SBOL Visual 1.0 standard by expanding diagram syntax to include functional interactions and molecular species, making the relationship between diagrams and the SBOL data model explicit, supporting families of symbol variants, clarifying a number of requirements and best practices, and significantly expanding the collection of diagram glyphs

    SBOL-OWL: An ontological approach for formal and semantic representation of synthetic biology information

    Get PDF
    Standard representation of data is key for the reproducibility of designs in synthetic biology. The Synthetic Biology Open Language (SBOL) has already emerged as a data standard to represent information about genetic circuits, and it is based on capturing data using graphs. The language provides the syntax using a free text document that is accessible to humans only. This paper describes SBOL-OWL, an ontology for a machine understandable definition of SBOL. This ontology acts as a semantic layer for genetic circuit designs. As a result, computational tools can understand the meaning of design entities in addition to parsing structured SBOL data. SBOL-OWL not only describes how genetic circuits can be constructed computationally, it also facilitates the use of several existing Semantic Web tools for synthetic biology. This paper demonstrates some of these features, for example, to validate designs and check for inconsistencies. Through the use of SBOL-OWL, queries can be simplified and become more intuitive. Moreover, existing reasoners can be used to infer information about genetic circuit designs that cannot be directly retrieved using existing querying mechanisms. This ontological representation of the SBOL standard provides a new perspective to the verification, representation, and querying of information about genetic circuits and is important to incorporate complex design information via the integration of biological ontologies

    Doctor of Philosophy

    Get PDF
    dissertationSynthetic biology is a new field in which engineers, biologists, and chemists are working together to transform genetic engineering into an advanced engineering discipline, one in which the design and construction of novel genetic circuits are made possible through the application of engineering principles. This dissertation explores two engineering strategies to address the challenges of working with genetic technology, namely the development of standards for describing genetic components and circuits at separate yet connected levels of detail and the use of Genetic Design Automation (GDA) software tools to simplify and speed up the process of optimally designing genetic circuits. Its contributions to the field of synthetic biology include (1) a proposal for the next version of the Synthetic Biology Open Language (SBOL), an existing standard for specifying and exchanging genetic designs electronically, and (2) a GDA work ow that enables users of the software tool iBioSim to create an abstract functional specication, automatically select genetic components that satisfy the specication from a design library, and compose the selected components into a standardized genetic circuit design for subsequent analysis and physical construction. Ultimately, this dissertation demonstrates how existing techniques and concepts from electrical and computer engineering can be adapted to overcome the challenges of genetic design and is an example of what is possible when working with publicly available standards for genetic design

    Annotations for Rule-Based Models

    Full text link
    The chapter reviews the syntax to store machine-readable annotations and describes the mapping between rule-based modelling entities (e.g., agents and rules) and these annotations. In particular, we review an annotation framework and the associated guidelines for annotating rule-based models of molecular interactions, encoded in the commonly used Kappa and BioNetGen languages, and present prototypes that can be used to extract and query the annotations. An ontology is used to annotate models and facilitate their description
    • …
    corecore