47 research outputs found

    Supervisory control synthesis for large-scale infrastructural systems

    Get PDF

    Supervisory control synthesis for large-scale infrastructural systems

    Get PDF

    Supervisor Localization of Discrete-Event Systems based on State Tree Structures

    Full text link
    Recently we developed supervisor localization, a top-down approach to distributed control of discrete-event systems in the Ramadge-Wonham supervisory control framework. Its essence is the decomposition of monolithic (global) control action into local control strategies for the individual agents. In this paper, we establish a counterpart supervisor localization theory in the framework of State Tree Structures, known to be efficient for control design of very large systems. In the new framework, we introduce the new concepts of local state tracker, local control function, and state-based local-global control equivalence. As before, we prove that the collective localized control behavior is identical to the monolithic optimal (i.e. maximally permissive) and nonblocking controlled behavior. In addition, we propose a new and more efficient localization algorithm which exploits BDD computation. Finally we demonstrate our localization approach on a model for a complex semiconductor manufacturing system

    Nonconflict check by using sequential automaton abstractions

    Get PDF
    In Ramadge-Wonham supervisory control theory we often need to check nonconflict of plants and corresponding synthesized supervisors. For a large system such a check imposes a great computational challenge because of the complexity incurred by composition of plants and supervisors. In this paper we present a novel procedure based on automaton abstractions, which removes internal transitions of relevant automata at each step, allowing the nonconflict check to be performed over relatively small automata, even though the original system can be fairly large

    Model Abstraction of Nondeterministic Finite-State Automata in Supervisor Synthesis

    Full text link

    Model Properties for Efficient Synthesis of Nonblocking Modular Supervisors

    Get PDF
    Supervisory control theory provides means to synthesize supervisors for systems with discrete-event behavior from models of the uncontrolled plant and of the control requirements. The applicability of supervisory control theory often fails due to a lack of scalability of the algorithms. We propose a format for the requirements and a method to ensure that the crucial properties of controllability and nonblockingness directly hold, thus avoiding the most computationally expensive parts of synthesis. The method consists of creating a control problem dependency graph and verifying whether it is acyclic. Vertices of the graph are modular plant components, and edges are derived from the requirements. In case of a cyclic graph, potential blocking issues can be localized, so that the original control problem can be reduced to only synthesizing supervisors for smaller partial control problems. The strength of the method is illustrated on two case studies: a production line and a roadway tunnel.Comment: Submitted to Journal of Control Engineering Practice, revision

    Light at the end of the tunnel:Synthesis-based engineering for road tunnels

    Get PDF
    corecore