77 research outputs found

    TransForm: Formally Specifying Transistency Models and Synthesizing Enhanced Litmus Tests

    Full text link
    Memory consistency models (MCMs) specify the legal ordering and visibility of shared memory accesses in a parallel program. Traditionally, instruction set architecture (ISA) MCMs assume that relevant program-visible memory ordering behaviors only result from shared memory interactions that take place between user-level program instructions. This assumption fails to account for virtual memory (VM) implementations that may result in additional shared memory interactions between user-level program instructions and both 1) system-level operations (e.g., address remappings and translation lookaside buffer invalidations initiated by system calls) and 2) hardware-level operations (e.g., hardware page table walks and dirty bit updates) during a user-level program's execution. These additional shared memory interactions can impact the observable memory ordering behaviors of user-level programs. Thus, memory transistency models (MTMs) have been coined as a superset of MCMs to additionally articulate VM-aware consistency rules. However, no prior work has enabled formal MTM specifications, nor methods to support their automated analysis. To fill the above gap, this paper presents the TransForm framework. First, TransForm features an axiomatic vocabulary for formally specifying MTMs. Second, TransForm includes a synthesis engine to support the automated generation of litmus tests enhanced with MTM features (i.e., enhanced litmus tests, or ELTs) when supplied with a TransForm MTM specification. As a case study, we formally define an estimated MTM for Intel x86 processors, called x86t_elt, that is based on observations made by an ELT-based evaluation of an Intel x86 MTM implementation from prior work and available public documentation. Given x86t_elt and a synthesis bound as input, TransForm's synthesis engine successfully produces a set of ELTs including relevant ELTs from prior work.Comment: *This is an updated version of the TransForm paper that features updated results reflecting performance optimizations and software bug fixes. 14 pages, 11 figures, Proceedings of the 47th Annual International Symposium on Computer Architecture (ISCA

    Practical synthesis from real-world oracles

    Get PDF
    As software systems become increasingly heterogeneous, the ability of compilers to reason about an entire system has decreased. When components of a system are not implemented as traditional programs, but rather as specialised hardware, optimised architecture-specific libraries, or network services, the compiler is unable to cross these abstraction barriers and analyse the system as a whole. If these components could be modelled or understood as programs, then the compiler would be able to reason about their behaviour without concern for their internal implementation details: a homogeneous view of the entire system would be afforded. However, it is not often the case that such components ever corresponded to an original program. This means that to facilitate this homogenenous analysis, programmatic models of component behaviour must be learned or constructed automatically. Constructing these models is an inductive program synthesis problem, albeit a challenging one that is largely beyond the ability of existing implementations. In order for the problem to be made tractable, information provided by the underlying context (i.e. the real component behaviour to be matched) must be integrated. This thesis presents three program synthesis approaches that integrate contextual information to synthesise programmatic models for real, existing components. The first, Annote, exploits informally-encoded information about a component's interface (e.g. from documentation) by weaving that information into an extended type-and-attribute system for component interfaces. The second, Presyn, learns a pair of cooperating probabilistic models from prior syntheses, that aim to predict likely program structure based on a component's interface. Finally, Haze uses observations of common side-effects of component executions to bias the search for programs. These approaches are each evaluated against comparable synthesisers from the literature, on a set of benchmark problems derived from real components. Learning models for component behaviour is only a partial solution; the compiler must also have some mechanism to use those models for program analysis and transformation. This thesis additionally proposes a novel mechanism for context-sensitive automatic API migration based on synthesised programmatic models, and evaluates the effectiveness of doing so on real application code. In summary, this thesis proposes a new framing for program synthesis problems that target the behaviour of real components, and demonstrates three different potential approaches to synthesis in this spirit. The success of these approaches is evaluated against implementations from the literature, and their results used to drive a novel API migration technique

    Towards Porting Operating Systems with Program Synthesis

    Full text link
    The end of Moore's Law has ushered in a diversity of hardware not seen in decades. Operating system (and system software) portability is accordingly becoming increasingly critical. Simultaneously, there has been tremendous progress in program synthesis. We set out to explore the feasibility of using modern program synthesis to generate the machine-dependent parts of an operating system. Our ultimate goal is to generate new ports automatically from descriptions of new machines. One of the issues involved is writing specifications, both for machine-dependent operating system functionality and for instruction set architectures. We designed two domain-specific languages: Alewife for machine-independent specifications of machine-dependent operating system functionality and Cassiopea for describing instruction set architecture semantics. Automated porting also requires an implementation. We developed a toolchain that, given an Alewife specification and a Cassiopea machine description, specializes the machine-independent specification to the target instruction set architecture and synthesizes an implementation in assembly language with a customized symbolic execution engine. Using this approach, we demonstrate successful synthesis of a total of 140 OS components from two pre-existing OSes for four real hardware platforms. We also developed several optimization methods for OS-related assembly synthesis to improve scalability. The effectiveness of our languages and ability to synthesize code for all 140 specifications is evidence of the feasibility of program synthesis for machine-dependent OS code. However, many research challenges remain; we also discuss the benefits and limitations of our synthesis-based approach to automated OS porting.Comment: ACM Transactions on Programming Languages and Systems. Accepted on August 202
    • …
    corecore