4,938 research outputs found

    Synthesizing a Lego Forklift Controller in GR(1): A Case Study

    Full text link
    Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive system from a given specification. GR(1) is a well-known fragment of linear temporal logic (LTL) where synthesis is possible using a polynomial symbolic algorithm. We conducted a case study to learn about the challenges that software engineers may face when using GR(1) synthesis for the development of a reactive robotic system. In the case study we developed two variants of a forklift controller, deployed on a Lego robot. The case study employs LTL specification patterns as an extension of the GR(1) specification language, an examination of two specification variants for execution scheduling, traceability from the synthesized controller to constraints in the specification, and generated counter strategies to support understanding reasons for unrealizability. We present the specifications we developed, our observations, and challenges faced during the case study.Comment: In Proceedings SYNT 2015, arXiv:1602.0078

    DSSynth: An automated digital controller synthesis tool for physical plants

    Get PDF
    We present an automated MATLAB Toolbox, named DSSynth (Digital-System Synthesizer), to synthesize sound digital controllers for physical plants that are represented as linear time-invariant systems with single input and output. In particular, DSSynth synthesizes digital controllers that are sound w.r.t. stability and safety specifications. DSSynth considers the complete range of approximations, including time discretization, quantization effects and finite-precision arithmetic (and its rounding errors). We demonstrate the practical value of this toolbox by automatically synthesizing stable and safe controllers for intricate physical plant models from the digital control literature. The resulting toolbox enables the application of program synthesis to real-world control engineering problems

    Synthesis of Switching Protocols from Temporal Logic Specifications

    Get PDF
    We propose formal means for synthesizing switching protocols that determine the sequence in which the modes of a switched system are activated to satisfy certain high-level specifications in linear temporal logic. The synthesized protocols are robust against exogenous disturbances on the continuous dynamics. Two types of finite transition systems, namely under- and over-approximations, that abstract the behavior of the underlying continuous dynamics are defined. In particular, we show that the discrete synthesis problem for an under-approximation can be formulated as a model checking problem, whereas that for an over-approximation can be transformed into a two-player game. Both of these formulations are amenable to efficient, off-the-shelf software tools. By construction, existence of a discrete switching strategy for the discrete synthesis problem guarantees the existence of a continuous switching protocol for the continuous synthesis problem, which can be implemented at the continuous level to ensure the correctness of the nonlinear switched system. Moreover, the proposed framework can be straightforwardly extended to accommodate specifications that require reacting to possibly adversarial external events. Finally, these results are illustrated using three examples from different application domains

    Low-Complexity Quantized Switching Controllers using Approximate Bisimulation

    Full text link
    In this paper, we consider the problem of synthesizing low-complexity controllers for incrementally stable switched systems. For that purpose, we establish a new approximation result for the computation of symbolic models that are approximately bisimilar to a given switched system. The main advantage over existing results is that it allows us to design naturally quantized switching controllers for safety or reachability specifications; these can be pre-computed offline and therefore the online execution time is reduced. Then, we present a technique to reduce the memory needed to store the control law by borrowing ideas from algebraic decision diagrams for compact function representation and by exploiting the non-determinism of the synthesized controllers. We show the merits of our approach by applying it to a simple model of temperature regulation in a building

    Sound and Automated Synthesis of Digital Stabilizing Controllers for Continuous Plants

    Get PDF
    Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counter-example guided inductive synthesis that automates the design of digital controllers that are correct by construction. The synthesis result is sound with respect to the complete range of approximations, including time discretization, quantization effects, and finite-precision arithmetic and its rounding errors. We have implemented our new algorithm in a tool called DSSynth, and are able to automatically generate stable controllers for a set of intricate plant models taken from the literature within minutes.Comment: 10 page

    A New Simulation Metric to Determine Safe Environments and Controllers for Systems with Unknown Dynamics

    Full text link
    We consider the problem of extracting safe environments and controllers for reach-avoid objectives for systems with known state and control spaces, but unknown dynamics. In a given environment, a common approach is to synthesize a controller from an abstraction or a model of the system (potentially learned from data). However, in many situations, the relationship between the dynamics of the model and the \textit{actual system} is not known; and hence it is difficult to provide safety guarantees for the system. In such cases, the Standard Simulation Metric (SSM), defined as the worst-case norm distance between the model and the system output trajectories, can be used to modify a reach-avoid specification for the system into a more stringent specification for the abstraction. Nevertheless, the obtained distance, and hence the modified specification, can be quite conservative. This limits the set of environments for which a safe controller can be obtained. We propose SPEC, a specification-centric simulation metric, which overcomes these limitations by computing the distance using only the trajectories that violate the specification for the system. We show that modifying a reach-avoid specification with SPEC allows us to synthesize a safe controller for a larger set of environments compared to SSM. We also propose a probabilistic method to compute SPEC for a general class of systems. Case studies using simulators for quadrotors and autonomous cars illustrate the advantages of the proposed metric for determining safe environment sets and controllers.Comment: 22nd ACM International Conference on Hybrid Systems: Computation and Control (2019
    corecore