15,775 research outputs found

    Synthesizing System Integration Requirements Model Fragments

    Get PDF
    Systems integration is an enduring issue in organizations. Many organizations have often been faced with the predicament of managing large and complex IT infrastructures accumulated over the years. Before proposing suitable integration architecture and selecting appropriate implementation solutions, a holistic and clear understanding of the enterprise-wide integration requirements among various internal and external systems is needed. This paper builds on prior literature on conceptual modelling of integration requirements to present an algorithm that synthesizes model fragments, i.e., piecemeal sections of the integration requirements. The details of the algorithm, for synthesizing two or more model fragments into a single integration requirements model, are detailed in this paper. An empirical assessment of the algorithm\u27s generated integration solution is made by comparing it against that performed manually

    A planning approach to the automated synthesis of template-based process models

    Get PDF
    The design-time specification of flexible processes can be time-consuming and error-prone, due to the high number of tasks involved and their context-dependent nature. Such processes frequently suffer from potential interference among their constituents, since resources are usually shared by the process participants and it is difficult to foresee all the potential tasks interactions in advance. Concurrent tasks may not be independent from each other (e.g., they could operate on the same data at the same time), resulting in incorrect outcomes. To tackle these issues, we propose an approach for the automated synthesis of a library of template-based process models that achieve goals in dynamic and partially specified environments. The approach is based on a declarative problem definition and partial-order planning algorithms for template generation. The resulting templates guarantee sound concurrency in the execution of their activities and are reusable in a variety of partially specified contextual environments. As running example, a disaster response scenario is given. The approach is backed by a formal model and has been tested in experiment

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    A multi-paradigm language for reactive synthesis

    Get PDF
    This paper proposes a language for describing reactive synthesis problems that integrates imperative and declarative elements. The semantics is defined in terms of two-player turn-based infinite games with full information. Currently, synthesis tools accept linear temporal logic (LTL) as input, but this description is less structured and does not facilitate the expression of sequential constraints. This motivates the use of a structured programming language to specify synthesis problems. Transition systems and guarded commands serve as imperative constructs, expressed in a syntax based on that of the modeling language Promela. The syntax allows defining which player controls data and control flow, and separating a program into assumptions and guarantees. These notions are necessary for input to game solvers. The integration of imperative and declarative paradigms allows using the paradigm that is most appropriate for expressing each requirement. The declarative part is expressed in the LTL fragment of generalized reactivity(1), which admits efficient synthesis algorithms, extended with past LTL. The implementation translates Promela to input for the Slugs synthesizer and is written in Python. The AMBA AHB bus case study is revisited and synthesized efficiently, identifying the need to reorder binary decision diagrams during strategy construction, in order to prevent the exponential blowup observed in previous work.Comment: In Proceedings SYNT 2015, arXiv:1602.0078

    SMA -- The Smyle Modeling Approach

    Get PDF
    This paper introduces the model-based software development lifecycle model SMA -- the Smyle Modeling Approach -- which is centered around Smyle. Smyle is a dedicated learning procedure to support engineers to interactively obtain design models from requirements, characterized as either being desired (positive) or unwanted (negative) system behavior. Within SMA, the learning approach is complemented by so-called scenario patterns where the engineer can specify clearly desired or unwanted behavior. This way, user interaction is reduced to the interesting scenarios limiting the design effort considerably. In SMA, the learning phase is further complemented by an effective analysis phase that allows for detecting design flaws at an early design stage. Using learning techniques allows us to gradually develop and refine requirements, naturally supporting evolving requirements, and allows for a rather inexpensive redesign in case anomalous system behavior is detected during analysis, testing, or maintenance. This paper describes the approach and reports on first practical experiences

    SMA -- The Smyle Modeling Approach

    Get PDF
    This paper introduces the model-based software development lifecycle model SMA -- the Smyle Modeling Approach -- which is centered around Smyle. Smyle is a dedicated learning procedure to support engineers to interactively obtain design models from requirements, characterized as either being desired (positive) or unwanted (negative) system behavior. Within SMA, the learning approach is complemented by so-called scenario patterns where the engineer can specify clearly desired or unwanted behavior. This way, user interaction is reduced to the interesting scenarios limiting the design effort considerably. In SMA, the learning phase is further complemented by an effective analysis phase that allows for detecting design flaws at an early design stage. Using learning techniques allows us to gradually develop and refine requirements, naturally supporting evolving requirements, and allows for a rather inexpensive redesign in case anomalous system behavior is detected during analysis, testing, or maintenance. This paper describes the approach and reports on first practical experiences
    • …
    corecore