283 research outputs found

    Lucid Data Dreaming for Video Object Segmentation

    Full text link
    Convolutional networks reach top quality in pixel-level video object segmentation but require a large amount of training data (1k~100k) to deliver such results. We propose a new training strategy which achieves state-of-the-art results across three evaluation datasets while using 20x~1000x less annotated data than competing methods. Our approach is suitable for both single and multiple object segmentation. Instead of using large training sets hoping to generalize across domains, we generate in-domain training data using the provided annotation on the first frame of each video to synthesize ("lucid dream") plausible future video frames. In-domain per-video training data allows us to train high quality appearance- and motion-based models, as well as tune the post-processing stage. This approach allows to reach competitive results even when training from only a single annotated frame, without ImageNet pre-training. Our results indicate that using a larger training set is not automatically better, and that for the video object segmentation task a smaller training set that is closer to the target domain is more effective. This changes the mindset regarding how many training samples and general "objectness" knowledge are required for the video object segmentation task.Comment: Accepted in International Journal of Computer Vision (IJCV

    Few-Cost Salient Object Detection with Adversarial-Paced Learning

    Get PDF
    Detecting and segmenting salient objects from given image scenes has received great attention in recent years. A fundamental challenge in training the existing deep saliency detection models is the requirement of large amounts of annotated data. While gathering large quantities of training data becomes cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. To address this problem, this paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only, thus dramatically alleviating human labor in training models. To this end, we name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario. Essentially, APL is derived from the self-paced learning (SPL) regime but it infers the robust learning pace through the data-driven adversarial learning mechanism rather than the heuristic design of the learning regularizer. Comprehensive experiments on four widely-used benchmark datasets demonstrate that the proposed method can effectively approach to the existing supervised deep salient object detection models with only 1k human-annotated training images. The project page is available at https://github.com/hb-stone/FC-SOD
    • …
    corecore