885 research outputs found

    Synthesizing Short-Circuiting Validation of Data Structure Invariants

    Full text link
    This paper presents incremental verification-validation, a novel approach for checking rich data structure invariants expressed as separation logic assertions. Incremental verification-validation combines static verification of separation properties with efficient, short-circuiting dynamic validation of arbitrarily rich data constraints. A data structure invariant checker is an inductive predicate in separation logic with an executable interpretation; a short-circuiting checker is an invariant checker that stops checking whenever it detects at run time that an assertion for some sub-structure has been fully proven statically. At a high level, our approach does two things: it statically proves the separation properties of data structure invariants using a static shape analysis in a standard way but then leverages this proof in a novel manner to synthesize short-circuiting dynamic validation of the data properties. As a consequence, we enable dynamic validation to make up for imprecision in sound static analysis while simultaneously leveraging the static verification to make the remaining dynamic validation efficient. We show empirically that short-circuiting can yield asymptotic improvements in dynamic validation, with low overhead over no validation, even in cases where static verification is incomplete

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Differentially Testing Soundness and Precision of Program Analyzers

    Full text link
    In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-of-the art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers

    SAT-Based Synthesis Methods for Safety Specs

    Full text link
    Automatic synthesis of hardware components from declarative specifications is an ambitious endeavor in computer aided design. Existing synthesis algorithms are often implemented with Binary Decision Diagrams (BDDs), inheriting their scalability limitations. Instead of BDDs, we propose several new methods to synthesize finite-state systems from safety specifications using decision procedures for the satisfiability of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on computational learning, templates, or reduction to first-order logic. We also present an efficient parallelization, and optimizations to utilize reachability information and incremental solving. Finally, we compare all methods in an extensive case study. Our new methods outperform BDDs and other existing work on some classes of benchmarks, and our parallelization achieves a super-linear speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1

    Generating Non-Linear Interpolants by Semidefinite Programming

    Full text link
    Interpolation-based techniques have been widely and successfully applied in the verification of hardware and software, e.g., in bounded-model check- ing, CEGAR, SMT, etc., whose hardest part is how to synthesize interpolants. Various work for discovering interpolants for propositional logic, quantifier-free fragments of first-order theories and their combinations have been proposed. However, little work focuses on discovering polynomial interpolants in the literature. In this paper, we provide an approach for constructing non-linear interpolants based on semidefinite programming, and show how to apply such results to the verification of programs by examples.Comment: 22 pages, 4 figure

    Eliminating Network Protocol Vulnerabilities Through Abstraction and Systems Language Design

    Full text link
    Incorrect implementations of network protocol message specifications affect the stability, security, and cost of network system development. Most implementation defects fall into one of three categories of well defined message constraints. However, the general process of constructing network protocol stacks and systems does not capture these categorical con- straints. We introduce a systems programming language with new abstractions that capture these constraints. Safe and efficient implementations of standard message handling operations are synthesized by our compiler, and whole-program analysis is used to ensure constraints are never violated. We present language examples using the OpenFlow protocol

    Learning-Based Synthesis of Safety Controllers

    Full text link
    We propose a machine learning framework to synthesize reactive controllers for systems whose interactions with their adversarial environment are modeled by infinite-duration, two-player games over (potentially) infinite graphs. Our framework targets safety games with infinitely many vertices, but it is also applicable to safety games over finite graphs whose size is too prohibitive for conventional synthesis techniques. The learning takes place in a feedback loop between a teacher component, which can reason symbolically about the safety game, and a learning algorithm, which successively learns an overapproximation of the winning region from various kinds of examples provided by the teacher. We develop a novel decision tree learning algorithm for this setting and show that our algorithm is guaranteed to converge to a reactive safety controller if a suitable overapproximation of the winning region can be expressed as a decision tree. Finally, we empirically compare the performance of a prototype implementation to existing approaches, which are based on constraint solving and automata learning, respectively

    PrIC3: Property Directed Reachability for MDPs

    Get PDF
    IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we present a first implementation of PrIC3 including the key ingredients from IC3 such as generalization, repushing, and propagation
    corecore