1,073 research outputs found

    Abstract Learning Frameworks for Synthesis

    Full text link
    We develop abstract learning frameworks (ALFs) for synthesis that embody the principles of CEGIS (counter-example based inductive synthesis) strategies that have become widely applicable in recent years. Our framework defines a general abstract framework of iterative learning, based on a hypothesis space that captures the synthesized objects, a sample space that forms the space on which induction is performed, and a concept space that abstractly defines the semantics of the learning process. We show that a variety of synthesis algorithms in current literature can be embedded in this general framework. While studying these embeddings, we also generalize some of the synthesis problems these instances are of, resulting in new ways of looking at synthesis problems using learning. We also investigate convergence issues for the general framework, and exhibit three recipes for convergence in finite time. The first two recipes generalize current techniques for convergence used by existing synthesis engines. The third technique is a more involved technique of which we know of no existing instantiation, and we instantiate it to concrete synthesis problems

    Efficient Image Evidence Analysis of CNN Classification Results

    Get PDF
    Convolutional neural networks (CNNs) define the current state-of-the-art for image recognition. With their emerging popularity, especially for critical applications like medical image analysis or self-driving cars, confirmability is becoming an issue. The black-box nature of trained predictors make it difficult to trace failure cases or to understand the internal reasoning processes leading to results. In this paper we introduce a novel efficient method to visualise evidence that lead to decisions in CNNs. In contrast to network fixation or saliency map methods, our method is able to illustrate the evidence for or against a classifier's decision in input pixel space approximately 10 times faster than previous methods. We also show that our approach is less prone to noise and can focus on the most relevant input regions, thus making it more accurate and interpretable. Moreover, by making simplifications we link our method with other visualisation methods, providing a general explanation for gradient-based visualisation techniques. We believe that our work makes network introspection more feasible for debugging and understanding deep convolutional networks. This will increase trust between humans and deep learning models.Comment: 14 pages, 19 figure

    A Formalization of Robustness for Deep Neural Networks

    Full text link
    Deep neural networks have been shown to lack robustness to small input perturbations. The process of generating the perturbations that expose the lack of robustness of neural networks is known as adversarial input generation. This process depends on the goals and capabilities of the adversary, In this paper, we propose a unifying formalization of the adversarial input generation process from a formal methods perspective. We provide a definition of robustness that is general enough to capture different formulations. The expressiveness of our formalization is shown by modeling and comparing a variety of adversarial attack techniques

    dtControl: Decision Tree Learning Algorithms for Controller Representation

    Full text link
    Decision tree learning is a popular classification technique most commonly used in machine learning applications. Recent work has shown that decision trees can be used to represent provably-correct controllers concisely. Compared to representations using lookup tables or binary decision diagrams, decision trees are smaller and more explainable. We present dtControl, an easily extensible tool for representing memoryless controllers as decision trees. We give a comprehensive evaluation of various decision tree learning algorithms applied to 10 case studies arising out of correct-by-construction controller synthesis. These algorithms include two new techniques, one for using arbitrary linear binary classifiers in the decision tree learning, and one novel approach for determinizing controllers during the decision tree construction. In particular the latter turns out to be extremely efficient, yielding decision trees with a single-digit number of decision nodes on 5 of the case studies

    Efficient Neural Network Robustness Certification with General Activation Functions

    Full text link
    Finding minimum distortion of adversarial examples and thus certifying robustness in neural network classifiers for given data points is known to be a challenging problem. Nevertheless, recently it has been shown to be possible to give a non-trivial certified lower bound of minimum adversarial distortion, and some recent progress has been made towards this direction by exploiting the piece-wise linear nature of ReLU activations. However, a generic robustness certification for general activation functions still remains largely unexplored. To address this issue, in this paper we introduce CROWN, a general framework to certify robustness of neural networks with general activation functions for given input data points. The novelty in our algorithm consists of bounding a given activation function with linear and quadratic functions, hence allowing it to tackle general activation functions including but not limited to four popular choices: ReLU, tanh, sigmoid and arctan. In addition, we facilitate the search for a tighter certified lower bound by adaptively selecting appropriate surrogates for each neuron activation. Experimental results show that CROWN on ReLU networks can notably improve the certified lower bounds compared to the current state-of-the-art algorithm Fast-Lin, while having comparable computational efficiency. Furthermore, CROWN also demonstrates its effectiveness and flexibility on networks with general activation functions, including tanh, sigmoid and arctan.Comment: Accepted by NIPS 2018. Huan Zhang and Tsui-Wei Weng contributed equall

    Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive Survey

    Full text link
    Data quality is the key factor for the development of trustworthy AI in healthcare. A large volume of curated datasets with controlled confounding factors can help improve the accuracy, robustness and privacy of downstream AI algorithms. However, access to good quality datasets is limited by the technical difficulty of data acquisition and large-scale sharing of healthcare data is hindered by strict ethical restrictions. Data synthesis algorithms, which generate data with a similar distribution as real clinical data, can serve as a potential solution to address the scarcity of good quality data during the development of trustworthy AI. However, state-of-the-art data synthesis algorithms, especially deep learning algorithms, focus more on imaging data while neglecting the synthesis of non-imaging healthcare data, including clinical measurements, medical signals and waveforms, and electronic healthcare records (EHRs). Thus, in this paper, we will review the synthesis algorithms, particularly for non-imaging medical data, with the aim of providing trustworthy AI in this domain. This tutorial-styled review paper will provide comprehensive descriptions of non-imaging medical data synthesis on aspects including algorithms, evaluations, limitations and future research directions.Comment: 35 pages, Submitted to ACM Computing Survey
    • …
    corecore