76 research outputs found

    Vetting undesirable behaviors in android apps with permission use analysis

    Full text link
    Android platform adopts permissions to protect sensitive resources from untrusted apps. However, after permissions are granted by users at install time, apps could use these permissions (sensitive resources) with no further restrictions. Thus, recent years have witnessed the explosion of undesirable behaviors in Android apps. An important part in the defense is the accurate analysis of Android apps. However, traditional syscall-based analysis techniques are not well-suited for Android, because they could not capture critical interactions between the application and the Android system. This paper presents VetDroid, a dynamic analysis platform for reconstructing sensitive behaviors in Android apps from a novel permission use perspective. VetDroid features a systematic frame-work to effectively construct permission use behaviors, i.e., how applications use permissions to access (sensitive) system resources, and how these acquired permission-sensitive resources are further utilized by the application. With permission use behaviors, security analysts can easily examine the internal sensitive behaviors of an app. Using real-world Android malware, we show that VetDroid can clearly reconstruct fine-grained malicious behaviors to ease malware analysis. We further apply VetDroid to 1,249 top free apps in Google Play. VetDroid can assist in finding more information leaks than TaintDroid [24], a state-of-the-art technique. In addition, we show howwe can use VetDroid to analyze fine-grained causes of information leaks that TaintDroid cannot reveal. Finally, we show that VetDroid can help identify subtle vulnerabilities in some (top free) applications otherwise hard to detect

    Mining Malware Specifications through Static Reachability Analysis

    Get PDF
    International audienceAbstract. The number of malicious software (malware) is growing out of control. Syntactic signature based detection cannot cope with such growth and manual construction of malware signature databases needs to be replaced by computer learning based approaches. Currently, a single modern signature capturing the semantics of a malicious behavior can be used to replace an arbitrarily large number of old-fashioned syntactical signatures. However teaching computers to learn such behaviors is a challenge. Existing work relies on dynamic analysis to extract malicious behaviors, but such technique does not guarantee the coverage of all behaviors. To sidestep this limitation we show how to learn malware signatures using static reachability analysis. The idea is to model binary programs using pushdown systems (that can be used to model the stack operations occurring during the binary code execution), use reachability analysis to extract behaviors in the form of trees, and use subtrees that are common among the trees extracted from a training set of malware files as signatures. To detect malware we propose to use a tree automaton to compactly store malicious behavior trees and check if any of the subtrees extracted from the file under analysis is malicious. Experimental data shows that our approach can be used to learn signatures from a training set of malware files and use them to detect a test set of malware that is 5 times the size of the training set

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    Survey on representation techniques for malware detection system

    Get PDF
    Malicious programs are malignant software’s designed by hackers or cyber offenders with a harmful intent to disrupt computer operation. In various researches, we found that the balance between designing an accurate architecture that can detect the malware and track several advanced techniques that malware creators apply to get variants of malware are always a difficult line. Hence the study of malware detection techniques has become more important and challenging within the security field. This review paper provides a detailed discussion and full reviews for various types of malware, malware detection techniques, various researches on them, malware analysis methods and different dynamic programmingbased tools that could be used to represent the malware sampled. We have provided a comprehensive bibliography in malware detection, its techniques and analysis methods for malware researchers

    A Categorical Treatment of Malicious Behavioral Obfuscation

    Get PDF
    International audienceThis paper studies malicious behavioral obfuscation through the use of a new abstract model for process and kernel interactions based on monoidal categories. In this model, program observations are consid-ered to be finite lists of system call invocations. In a first step, we show how malicious behaviors can be obfuscated by simulating the observa-tions of benign programs. In a second step, we show how to generate such malicious behaviors through a technique called path replaying and we extend the class of captured malwares by using some algorithmic transformations on morphisms graphical representation. In a last step, we show that all the obfuscated versions we obtained can be used to detect well-known malwares in practice
    • …
    corecore