4,783 research outputs found

    Filtering algorithms for global chance constraints

    Get PDF
    Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling framework for problems under uncertainty. To solve them is a PSPACE task. The only complete solution approach to date — scenario-based stochastic constraint programming — compiles SCSPs down into classical CSPs. This allows the reuse of classical constraint solvers to solve SCSPs, but at the cost of increased space requirements and weak constraint propagation. This paper tries to overcome these drawbacks by automatically synthesizing filtering algorithms for global chance constraints. These filtering algorithms are parameterized by propagators for the deterministic version of the chance constraints. This approach allows the reuse of existing propagators in current constraint solvers and it has the potential to enhance constraint propagation. Our results show that, for the test bed considered in this work, our approach is superior to scenario-based stochastic constraint programming. For these instances, our approach is more scalable, it produces more compact formulations, it is more efficient in terms of run time and more effective in terms of pruning for both stochastic constraint satisfaction and optimization problems

    Hybrid Metaheuristics for Stochastic Constraint Programming

    Get PDF

    Depth Assisted Full Resolution Network for Single Image-based View Synthesis

    Full text link
    Researches in novel viewpoint synthesis majorly focus on interpolation from multi-view input images. In this paper, we focus on a more challenging and ill-posed problem that is to synthesize novel viewpoints from one single input image. To achieve this goal, we propose a novel deep learning-based technique. We design a full resolution network that extracts local image features with the same resolution of the input, which contributes to derive high resolution and prevent blurry artifacts in the final synthesized images. We also involve a pre-trained depth estimation network into our system, and thus 3D information is able to be utilized to infer the flow field between the input and the target image. Since the depth network is trained by depth order information between arbitrary pairs of points in the scene, global image features are also involved into our system. Finally, a synthesis layer is used to not only warp the observed pixels to the desired positions but also hallucinate the missing pixels with recorded pixels. Experiments show that our technique performs well on images of various scenes, and outperforms the state-of-the-art techniques

    ECGadv: Generating Adversarial Electrocardiogram to Misguide Arrhythmia Classification System

    Full text link
    Deep neural networks (DNNs)-powered Electrocardiogram (ECG) diagnosis systems recently achieve promising progress to take over tedious examinations by cardiologists. However, their vulnerability to adversarial attacks still lack comprehensive investigation. The existing attacks in image domain could not be directly applicable due to the distinct properties of ECGs in visualization and dynamic properties. Thus, this paper takes a step to thoroughly explore adversarial attacks on the DNN-powered ECG diagnosis system. We analyze the properties of ECGs to design effective attacks schemes under two attacks models respectively. Our results demonstrate the blind spots of DNN-powered diagnosis systems under adversarial attacks, which calls attention to adequate countermeasures.Comment: Accepted by AAAI 202

    Confidence-based Reasoning in Stochastic Constraint Programming

    Get PDF
    In this work we introduce a novel approach, based on sampling, for finding assignments that are likely to be solutions to stochastic constraint satisfaction problems and constraint optimisation problems. Our approach reduces the size of the original problem being analysed; by solving this reduced problem, with a given confidence probability, we obtain assignments that satisfy the chance constraints in the original model within prescribed error tolerance thresholds. To achieve this, we blend concepts from stochastic constraint programming and statistics. We discuss both exact and approximate variants of our method. The framework we introduce can be immediately employed in concert with existing approaches for solving stochastic constraint programs. A thorough computational study on a number of stochastic combinatorial optimisation problems demonstrates the effectiveness of our approach.Comment: 53 pages, working draf

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed
    corecore