2,216 research outputs found

    Visual Quality Assessment and Blur Detection Based on the Transform of Gradient Magnitudes

    Get PDF
    abstract: Digital imaging and image processing technologies have revolutionized the way in which we capture, store, receive, view, utilize, and share images. In image-based applications, through different processing stages (e.g., acquisition, compression, and transmission), images are subjected to different types of distortions which degrade their visual quality. Image Quality Assessment (IQA) attempts to use computational models to automatically evaluate and estimate the image quality in accordance with subjective evaluations. Moreover, with the fast development of computer vision techniques, it is important in practice to extract and understand the information contained in blurred images or regions. The work in this dissertation focuses on reduced-reference visual quality assessment of images and textures, as well as perceptual-based spatially-varying blur detection. A training-free low-cost Reduced-Reference IQA (RRIQA) method is proposed. The proposed method requires a very small number of reduced-reference (RR) features. Extensive experiments performed on different benchmark databases demonstrate that the proposed RRIQA method, delivers highly competitive performance as compared with the state-of-the-art RRIQA models for both natural and texture images. In the context of texture, the effect of texture granularity on the quality of synthesized textures is studied. Moreover, two RR objective visual quality assessment methods that quantify the perceived quality of synthesized textures are proposed. Performance evaluations on two synthesized texture databases demonstrate that the proposed RR metrics outperforms full-reference (FR), no-reference (NR), and RR state-of-the-art quality metrics in predicting the perceived visual quality of the synthesized textures. Last but not least, an effective approach to address the spatially-varying blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings is proposed. The evaluations of the proposed approach on a diverse sets of blurry images with different blur types, levels, and content demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods qualitatively and quantitatively.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Enhancing Mesh Deformation Realism: Dynamic Mesostructure Detailing and Procedural Microstructure Synthesis

    Get PDF
    Propomos uma solução para gerar dados de mapas de relevo dinâmicos para simular deformações em superfícies macias, com foco na pele humana. A solução incorpora a simulação de rugas ao nível mesoestrutural e utiliza texturas procedurais para adicionar detalhes de microestrutura estáticos. Oferece flexibilidade além da pele humana, permitindo a geração de padrões que imitam deformações em outros materiais macios, como couro, durante a animação. As soluções existentes para simular rugas e pistas de deformação frequentemente dependem de hardware especializado, que é dispendioso e de difícil acesso. Além disso, depender exclusivamente de dados capturados limita a direção artística e dificulta a adaptação a mudanças. Em contraste, a solução proposta permite a síntese dinâmica de texturas que se adaptam às deformações subjacentes da malha de forma fisicamente plausível. Vários métodos foram explorados para sintetizar rugas diretamente na geometria, mas sofrem de limitações como auto-interseções e maiores requisitos de armazenamento. A intervenção manual de artistas na criação de mapas de rugas e mapas de tensão permite controle, mas pode ser limitada em deformações complexas ou onde maior realismo seja necessário. O nosso trabalho destaca o potencial dos métodos procedimentais para aprimorar a geração de padrões de deformação dinâmica, incluindo rugas, com maior controle criativo e sem depender de dados capturados. A incorporação de padrões procedimentais estáticos melhora o realismo, e a abordagem pode ser estendida além da pele para outros materiais macios.We propose a solution for generating dynamic heightmap data to simulate deformations for soft surfaces, with a focus on human skin. The solution incorporates mesostructure-level wrinkles and utilizes procedural textures to add static microstructure details. It offers flexibility beyond human skin, enabling the generation of patterns mimicking deformations in other soft materials, such as leater, during animation. Existing solutions for simulating wrinkles and deformation cues often rely on specialized hardware, which is costly and not easily accessible. Moreover, relying solely on captured data limits artistic direction and hinders adaptability to changes. In contrast, our proposed solution provides dynamic texture synthesis that adapts to underlying mesh deformations. Various methods have been explored to synthesize wrinkles directly to the geometry, but they suffer from limitations such as self-intersections and increased storage requirements. Manual intervention by artists using wrinkle maps and tension maps provides control but may be limited to the physics-based simulations. Our research presents the potential of procedural methods to enhance the generation of dynamic deformation patterns, including wrinkles, with greater creative control and without reliance on captured data. Incorporating static procedural patterns improves realism, and the approach can be extended to other soft-materials beyond skin

    Enhanced iris recognition: Algorithms for segmentation, matching and synthesis

    Get PDF
    This thesis addresses the issues of segmentation, matching, fusion and synthesis in the context of irises and makes a four-fold contribution. The first contribution of this thesis is a post matching algorithm that observes the structure of the differences in feature templates to enhance recognition accuracy. The significance of the scheme is its robustness to inaccuracies in the iris segmentation process. Experimental results on the CASIA database indicate the efficacy of the proposed technique. The second contribution of this thesis is a novel iris segmentation scheme that employs Geodesic Active Contours to extract the iris from the surrounding structures. The proposed scheme elicits the iris texture in an iterative fashion depending upon both the local and global conditions of the image. The performance of an iris recognition algorithm on both the WVU non-ideal and CASIA iris database is observed to improve upon application of the proposed segmentation algorithm. The third contribution of this thesis is the fusion of multiple instances of the same iris and multiple iris units of the eye, i.e., the left and right iris at the match score level. Using simple sum rule, it is demonstrated that both multi-instance and multi-unit fusion of iris can lead to a significant improvement in matching accuracy. The final contribution is a technique to create a large database of digital renditions of iris images that can be used to evaluate the performance of iris recognition algorithms. This scheme is implemented in two stages. In the first stage, a Markov Random Field model is used to generate a background texture representing the global iris appearance. In the next stage a variety of iris features, viz., radial and concentric furrows, collarette and crypts, are generated and embedded in the texture field. Experimental results confirm the validity of the synthetic irises generated using this technique

    Multimodal Adversarial Learning

    Get PDF
    Deep Convolutional Neural Networks (DCNN) have proven to be an exceptional tool for object recognition, generative modelling, and multi-modal learning in various computer vision applications. However, recent findings have shown that such state-of-the-art models can be easily deceived by inserting slight imperceptible perturbations to key pixels in the input. A good target detection systems can accurately identify targets by localizing their coordinates on the input image of interest. This is ideally achieved by labeling each pixel in an image as a background or a potential target pixel. However, prior research still confirms that such state of the art targets models are susceptible to adversarial attacks. In the case of generative models, facial sketches drawn by artists mostly used by law enforcement agencies depend on the ability of the artist to clearly replicate all the key facial features that aid in capturing the true identity of a subject. Recent works have attempted to synthesize these sketches into plausible visual images to improve visual recognition and identification. However, synthesizing photo-realistic images from sketches proves to be an even more challenging task, especially for sensitive applications such as suspect identification. However, the incorporation of hybrid discriminators, which perform attribute classification of multiple target attributes, a quality guided encoder that minimizes the perceptual dissimilarity of the latent space embedding of the synthesized and real image at different layers in the network have shown to be powerful tools towards better multi modal learning techniques. In general, our overall approach was aimed at improving target detection systems and the visual appeal of synthesized images while incorporating multiple attribute assignment to the generator without compromising the identity of the synthesized image. We synthesized sketches using XDOG filter for the CelebA, Multi-modal and CelebA-HQ datasets and from an auxiliary generator trained on sketches from CUHK, IIT-D and FERET datasets. Our results overall for different model applications are impressive compared to current state of the art

    Evaluation and Understandability of Face Image Quality Assessment

    Get PDF
    Face image quality assessment (FIQA) has been an area of interest to researchers as a way to improve the face recognition accuracy. By filtering out the low quality images we can reduce various difficulties faced in unconstrained face recognition, such as, failure in face or facial landmark detection or low presence of useful facial information. In last decade or so, researchers have proposed different methods to assess the face image quality, spanning from fusion of quality measures to using learning based methods. Different approaches have their own strength and weaknesses. But, it is hard to perform a comparative assessment of these methods without a database containing wide variety of face quality, a suitable training protocol that can efficiently utilize this large-scale dataset. In this thesis we focus on developing an evaluation platfrom using a large scale face database containing wide ranging face image quality and try to deconstruct the reason behind the predicted scores of learning based face image quality assessment methods. Contributions of this thesis is two-fold. Firstly, (i) a carefully crafted large scale database dedicated entirely to face image quality assessment has been proposed; (ii) a learning to rank based large-scale training protocol is devel- oped. Finally, (iii) a comprehensive study of 15 face image quality assessment methods using 12 different feature types, and relative ranking based label generation schemes, is performed. Evalua- tion results show various insights about the assessment methods which indicate the significance of the proposed database and the training protocol. Secondly, we have seen that in last few years, researchers have tried various learning based approaches to assess the face image quality. Most of these methods offer either a quality bin or a score summary as a measure of the biometric quality of the face image. But, to the best of our knowledge, so far there has not been any investigation on what are the explainable reasons behind the predicted scores. In this thesis, we propose a method to provide a clear and concise understanding of the predicted quality score of a learning based face image quality assessment. It is believed that this approach can be integrated into the FBI’s understandable template and can help in improving the image acquisition process by providing information on what quality factors need to be addressed
    corecore