38,470 research outputs found

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations

    Get PDF
    An innovative approach for the optimal matching of independently optimum sum and difference patterns through sub-arrayed monopulse linear arrays is presented. By exploiting the relationship between the independently optimal sum and difference excitations, the set of possible solutions is considerably reduced and the synthesis problem is recast as the search of the best solution in a non-complete binary tree. Towards this end, a fast resolution algorithm that exploits the presence of elements more suitable to charge sub-array membership is presented. The results of a set of numerical experiments are reported in order to validate the proposed approach pointing out its effectiveness also in comparison with state-of-the-art optimal matching techniques. (c) 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Tauberian theorem for value functions

    Full text link
    For two-person dynamic zero-sum games (both discrete and continuous settings), we investigate the limit of value functions of finite horizon games with long run average cost as the time horizon tends to infinity and the limit of value functions of λ\lambda-discounted games as the discount tends to zero. We prove that the Dynamic Programming Principle for value functions directly leads to the Tauberian Theorem---that the existence of a uniform limit of the value functions for one of the families implies that the other one also uniformly converges to the same limit. No assumptions on strategies are necessary. To this end, we consider a mapping that takes each payoff to the corresponding value function and preserves the sub- and super- optimality principles (the Dynamic Programming Principle). With their aid, we obtain certain inequalities on asymptotics of sub- and super- solutions, which lead to the Tauberian Theorem. In particular, we consider the case of differential games without relying on the existence of the saddle point; a very simple stochastic game model is also considered
    corecore